Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2015_69_2_a4, author = {Chahbi, Abdellatif and Fadli, Brahim and Kabbaj, Samir}, title = {Solution of a functional equation on compact groups using {Fourier} analysis}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {69}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2015_69_2_a4/} }
TY - JOUR AU - Chahbi, Abdellatif AU - Fadli, Brahim AU - Kabbaj, Samir TI - Solution of a functional equation on compact groups using Fourier analysis JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2015 VL - 69 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2015_69_2_a4/ LA - en ID - AUM_2015_69_2_a4 ER -
%0 Journal Article %A Chahbi, Abdellatif %A Fadli, Brahim %A Kabbaj, Samir %T Solution of a functional equation on compact groups using Fourier analysis %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2015 %V 69 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUM_2015_69_2_a4/ %G en %F AUM_2015_69_2_a4
Chahbi, Abdellatif; Fadli, Brahim; Kabbaj, Samir. Solution of a functional equation on compact groups using Fourier analysis. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 69 (2015) no. 2. http://geodesic.mathdoc.fr/item/AUM_2015_69_2_a4/
[1] Akkouchi, M., Bouikhalene, B., Elqorachi, E., Functional equations and K-spherical functions, Georgian Math. J. 15 (2008), 1-20.
[2] An, J., Yang, D.,Nonabelian harmonic analysis and functional equations on compact groups, J. Lie Theory 21 (2011), 427-455.
[3] Badora, R., On a joint generalization of Cauchy's and d'Alembert's functional equations, Aequationes Math. 43 (1992), 72-89.
[4] Chahbi, A., Fadli, B., Kabbaj, S., Functional equations of Cauchy's and d'Alembert's type on compact groups, Proyecciones (Antofagasta) 34 (2015), 297-305.
[5] Chojnacki, W., On some functional equation generalizing Cauchy's and d'Alembert's functional equations, Colloq. Math. 55 (1988), 169-178.
[6] Chojnacki, W., On group decompositions of bounded cosine sequences, Studia Math. 181 (2007), 61-85.
[7] Chojnacki, W., On uniformly bounded spherical functions in Hilbert space, Aequationes Math. 81 (2011), 135-154.
[8] Fadli, B., Zeglami, D., Kabbaj, S., A variant of Wilson's functional equation, Publ. Math. Debrecen, to appear.
[9] Davison, T. M. K., D'Alembert's functional equation on topological groups, Aequationes Math. 76 (2008), 33-53.
[10] Davison, T. M. K., D'Alembert's functional equation on topological monoids, Publ. Math. Debrecen, 75 (2009), 41-66.
[11] de Place Friis, P., D'Alembert's and Wilson's equation on Lie groups, Aequationes Math. 67 (2004), 12-25.
[12] Elqorachi, E., Akkouchi, M., Bakali, A., Bouikhalene, B., Badora's equation on non-Abelian locally compact groups, Georgian Math. J. 11 (2004), 449-466.
[13] Folland, G., A Course in Abstract Harmonic Analysis, CRC Press, Boca Raton, FL, 1995.
[14] Shin'ya, H., Spherical matrix functions and Banach representability for locally compact motion groups, Japan. J. Math. (N.S.), 28 (2002), 163-201.
[15] Stetkaer, H., D'Alembert's functional equations on metabelian groups, Aequationes Math. 59 (2000), 306-320.
[16] Stetkaer, H., D'Alembert's and Wilson's functional equations on step 2 nilpotent groups, Aequationes Math. 67 (2004), 241-262.
[17] Stetkaer, H., Properties of d'Alembert functions, Aequationes Math. 77 (2009), 281-301.
[18] Stetkaer, H., Functional Equations on Groups, World Scientfic, Singapore, 2013.
[19] Stetkaer, H., D'Alembert's functional equation on groups, Banach Center Publ. 99 (2013), 173-191.
[20] Stetkaer, H., A variant of d'Alembert's functional equation, Aequationes Math. 89 (2015), 657-662.
[21] Yang, D., Factorization of cosine functions on compact connected groups, Math. Z. 254 (2006), 655-674.
[22] Yang, D., Functional equations and Fourier analysis, Canad. Math. Bull. 56 (2013), 218-224.