A continuum individual based model of fragmentation: dynamics of correlation functions
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 69 (2015) no. 2.

Voir la notice de l'article provenant de la source Library of Science

An individual-based model of an infinite system of point particles in Rd is proposed and studied. In this model, each particle at random produces a finite number of new particles and disappears afterwards. The phase space for this model is the set Γ of all locally finite subsets of Rd. The system's states are probability measures on  Γ the Markov evolution of which is described in terms of their  correlation functions in a scale of Banach spaces. The existence and uniqueness of solutions of the corresponding evolution equation are proved.
Keywords: Configuration space, individual-based model, birth-and-death process, correlation function, scale of Banach spaces, Ovcyannikov method.
@article{AUM_2015_69_2_a0,
     author = {Tana\'s, Agnieszka},
     title = {A continuum individual based model of fragmentation: dynamics of correlation functions},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2015_69_2_a0/}
}
TY  - JOUR
AU  - Tanaś, Agnieszka
TI  - A continuum individual based model of fragmentation: dynamics of correlation functions
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2015
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2015_69_2_a0/
LA  - en
ID  - AUM_2015_69_2_a0
ER  - 
%0 Journal Article
%A Tanaś, Agnieszka
%T A continuum individual based model of fragmentation: dynamics of correlation functions
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2015
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2015_69_2_a0/
%G en
%F AUM_2015_69_2_a0
Tanaś, Agnieszka. A continuum individual based model of fragmentation: dynamics of correlation functions. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 69 (2015) no. 2. http://geodesic.mathdoc.fr/item/AUM_2015_69_2_a0/

[1] Albeverio, S., Kondratiev, Y., Rockner, M., Analysis and geometry on configuration spaces. J. Funct. Anal. 154 (1998), 444-500.

[2] Bogoliubov, N., Problems of a dynamical theory in statistical physics, in Studies in Statistical Mechanics, Vol. I (1962), 1-118.

[3] Boulanouar, M., The asymptotic behavior of a structured cell population, J. Evol. Equ. 11 (3) (2011), 531-552.

[4] Finkelshtein, D., Around Ovsyannikov’s method, Methods Funct. Anal. Topology 21 (2) (2015), 134-150.

[5] Finkelshtein, D., Kondratiev, Y., Kozitsky, Y., Glauber dynamics in continuum: A constructive approach to evolution of states, Discrete Contin. Dyn. Syst. 33 (4) (2013), 1431-1450.

[6] Finkelshtein, D., Kondratiev, Y., Kozitsky, Y., Kutoviy, O., The statistical dynamics of a spatial logistic model and the related kinetic equation, Math. Models Methods Appl. Sci. 25 (2) (2015), 343-370.

[7] Finkelshtein, D., Kondratiev, Y., Kutoviy, O., Individual based model with competition in spatial ecology, SIAM J. Math. Anal. 41 (2009), 297-317.

[8] Finkelshtein, D., Kondratiev, Y., Oliveira, M. J., Markov evolution and hierarchical equations in the continuum. I: One-component systems, J. Evol. Equ. 9 (2009), 197-233.

[9] Garcia, N. L., Kurtz, T. G., Spatial birth and death processes as solutions of stochastic equations, ALEA Lat. Am. J. Probab. Math. Stat. 1 (2006), 281-303.

[10] Kondratiev, Y., Kuna, T., Harmonic analysis on configuration space. I. General theory, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 5 (2002), 201-233.

[11] Kondratiev, Y., Kuna, T., Oliveira, M. J., Holomorphic Bogoliubov functionals for interacting particle systems in continuum, J. Funct. Anal. 238 (2006), 375-404.

[12] Kondratiev, Y., Kutoviy, O., On the metrical properties of the configuration space, Math. Nachr. 279 (2006), 774-783.

[13] Kondratiev, Y., Kutoviy, O., Pirogov, S., Correlation functions and invariant measures in continuous contact model, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 11 (2008), 231-258.

[14] Kozitsky, Y., Dynamics of spatial logistic model: finite systems, in Banasiak, J., Bobrowski, A., Lachowicz, M. (eds.) Semigroups of Operators - Theory and Applications, Bedlewo, Poland, October 2013. Springer Proceedings in Mathematics Statistics 113, 2015, 197-211.

[15] Lebowitz, J. L., Rubinow, S. I., A theory for the age and generation time distribution of a microbial population, J. Math. Biol. 1 (1974), 17-36.

[16] Neuhauser, C., Mathematical challenges in spatial ecology, Notices Amer. Math. Soc. 48 (11) (2001), 1304-1314.

[17] Shanthidevi, C. N., Matsumoto, T., Oharu, S., Nonlinear semigroup approach to age structured proliferating cell population with inherited cycle length, Nonlinear Anal. Real World Appl. 9 (5) (2008), 1905-1917.

[18] Treves, F., Ovcyannikov Theorem and Hyperdifferential Operators, Instituto de Matem´atica Pura e Aplicada, Conselho Nacional de Pesquisas, Rio de Janeiro, 1968.