Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2015_69_1_a5, author = {Narang, T. W. and Gupta, Sahil}, title = {Proximinality and co-proximinality in metric linear spaces}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {69}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2015_69_1_a5/} }
TY - JOUR AU - Narang, T. W. AU - Gupta, Sahil TI - Proximinality and co-proximinality in metric linear spaces JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2015 VL - 69 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2015_69_1_a5/ LA - en ID - AUM_2015_69_1_a5 ER -
Narang, T. W.; Gupta, Sahil. Proximinality and co-proximinality in metric linear spaces. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 69 (2015) no. 1. http://geodesic.mathdoc.fr/item/AUM_2015_69_1_a5/
[1] Cheney, E. W., Introduction to Approximation Theory, McGraw Hill, New York, 1966.
[2] Franchetti, C., Furi, M., Some characteristic properties of real Hilbert spaces, Rev. Roumaine Math. Pures Appl. 17 (1972), 1045–1048.
[3] Mazaheri, H., Maalek Ghaini, F. M., Quasi-orthogonality of the best approximant sets, Nonlinear Anal. 65 (2006), 534–537.
[4] Mazaheri, H., Modaress, S. M. S., Some results concerning proximinality and coproximinality, Nonlinear Anal. 62 (2005), 1123–1126.
[5] Muthukumar, S., A note on best and best simultaneous approximation, Indian J. Pure Appl. Math. 11 (1980), 715–719.
[6] Narang, T. D., Best approximation in metric spaces, Publ. Sec. Mat. Univ. Autonoma Barcelona 27 (1983), 71–80.