Proximinality and co-proximinality in metric linear spaces
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 69 (2015) no. 1.

Voir la notice de l'article provenant de la source Library of Science

As a counterpart to best approximation, the concept of best coapproximation was introduced in normed linear spaces by C. Franchetti and M. Furi in 1972. Subsequently, this study was taken up by many researchers. In this paper, we discuss some results on the existence and uniqueness of best approximation and best coapproximation when the underlying spaces are metric linear spaces.
Keywords: Best approximation, best coapproximation, proximinal set, co-proximinal set, Chebyshev set, co-Chebyshev set
@article{AUM_2015_69_1_a5,
     author = {Narang, T. W. and Gupta, Sahil},
     title = {Proximinality and co-proximinality in metric linear spaces},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2015_69_1_a5/}
}
TY  - JOUR
AU  - Narang, T. W.
AU  - Gupta, Sahil
TI  - Proximinality and co-proximinality in metric linear spaces
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2015
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2015_69_1_a5/
LA  - en
ID  - AUM_2015_69_1_a5
ER  - 
%0 Journal Article
%A Narang, T. W.
%A Gupta, Sahil
%T Proximinality and co-proximinality in metric linear spaces
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2015
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2015_69_1_a5/
%G en
%F AUM_2015_69_1_a5
Narang, T. W.; Gupta, Sahil. Proximinality and co-proximinality in metric linear spaces. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 69 (2015) no. 1. http://geodesic.mathdoc.fr/item/AUM_2015_69_1_a5/

[1] Cheney, E. W., Introduction to Approximation Theory, McGraw Hill, New York, 1966.

[2] Franchetti, C., Furi, M., Some characteristic properties of real Hilbert spaces, Rev. Roumaine Math. Pures Appl. 17 (1972), 1045–1048.

[3] Mazaheri, H., Maalek Ghaini, F. M., Quasi-orthogonality of the best approximant sets, Nonlinear Anal. 65 (2006), 534–537.

[4] Mazaheri, H., Modaress, S. M. S., Some results concerning proximinality and coproximinality, Nonlinear Anal. 62 (2005), 1123–1126.

[5] Muthukumar, S., A note on best and best simultaneous approximation, Indian J. Pure Appl. Math. 11 (1980), 715–719.

[6] Narang, T. D., Best approximation in metric spaces, Publ. Sec. Mat. Univ. Autonoma Barcelona 27 (1983), 71–80.