Components with the expected codimension in the moduli scheme of stable spin curves
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 69 (2015) no. 1.

Voir la notice de l'article provenant de la source Library of Science

Here we study the Brill–Noether theory of “extremal” Cornalba’s theta-characteristics on stable curves C of genus g, where “extremal” means that they are line bundles on a quasi-stable model of C with #(Sing(C)) exceptional components.
Keywords: Stable curve, theta-characteristic, spin curve, Brill–Noether theory
@article{AUM_2015_69_1_a2,
     author = {Ballico, Edoardo},
     title = {Components with the expected codimension in the moduli scheme of stable spin curves},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2015_69_1_a2/}
}
TY  - JOUR
AU  - Ballico, Edoardo
TI  - Components with the expected codimension in the moduli scheme of stable spin curves
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2015
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2015_69_1_a2/
LA  - en
ID  - AUM_2015_69_1_a2
ER  - 
%0 Journal Article
%A Ballico, Edoardo
%T Components with the expected codimension in the moduli scheme of stable spin curves
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2015
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2015_69_1_a2/
%G en
%F AUM_2015_69_1_a2
Ballico, Edoardo. Components with the expected codimension in the moduli scheme of stable spin curves. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 69 (2015) no. 1. http://geodesic.mathdoc.fr/item/AUM_2015_69_1_a2/

[1] Arbarello, E., Cornalba, M., Griffiths, P. A., Geometry of Algebraic Curves. Vol. II, Springer, Berlin, 2011.

[2] Ballico, E., Sections of theta-characteristics on stable curves, Int. J. Pure Appl. Math. 54, No. 3 (2009), 335–340.

[3] Benzo, L., Components of moduli spaces of spin curves with the expected codimension, Mathematische Annalen (2015), DOI 10.1007/s00208-015-1171-6, arXiv:1307.6954.

[4] Caporaso, L., A compactification of the universal Picard variety over the moduli space of stable curves, J. Amer. Math. Soc. 7, No. 3 (1994), 589–660.

[5] Cornalba, M., Moduli of curves and theta-characteristics. Lectures on Riemann surfaces (Trieste, 1987), World Sci. Publ., Teaneck, NJ, 1989, 560–589.

[6] Farkas, G., Gaussian maps, Gieseker–Petri loci and large theta-characteristics, J. Reine Angew. Math. 581 (2005), 151–173.

[7] Fontanari, C., On the geometry of moduli of curves and line bundles, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 16, No. 1 (2005), 45–59.

[8] Harris, J., Theta-characteristics on algebraic curves, Trans. Amer. Math. Soc. 271 (1982), 611–638.

[9] Jarvis, T. J., Torsion-free sheaves and moduli of generalized spin curves, Compositio Math. 110, No. 3 (1998), 291–333.