A-manifolds on a principal torus bundle over an almost Hodge A-manifold base
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 69 (2015) no. 1.

Voir la notice de l'article provenant de la source Library of Science

An A-manifold is a manifold whose Ricci tensor is cyclic-parallel, equivalently it satisfies ∇X Ric(X, X) = 0. This condition generalizes the Einstein condition. We construct new examples of A-manifolds on r-torus bundles over a base which is a product of almost Hodge A-manifolds.
Keywords: A-manifold, cyclic parallel Ricci, torus bundle, Einstein-like manifold, Killing tensor
@article{AUM_2015_69_1_a1,
     author = {Zborowski, Grzegorz},
     title = {A-manifolds on a principal torus bundle over an almost {Hodge} {A-manifold} base},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2015_69_1_a1/}
}
TY  - JOUR
AU  - Zborowski, Grzegorz
TI  - A-manifolds on a principal torus bundle over an almost Hodge A-manifold base
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2015
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2015_69_1_a1/
LA  - en
ID  - AUM_2015_69_1_a1
ER  - 
%0 Journal Article
%A Zborowski, Grzegorz
%T A-manifolds on a principal torus bundle over an almost Hodge A-manifold base
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2015
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2015_69_1_a1/
%G en
%F AUM_2015_69_1_a1
Zborowski, Grzegorz. A-manifolds on a principal torus bundle over an almost Hodge A-manifold base. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 69 (2015) no. 1. http://geodesic.mathdoc.fr/item/AUM_2015_69_1_a1/

[1] Besse, A., Einstein Manifolds, Springer-Verlag, Berlin, Heidelberg, 1987.

[2] Gray, A., Einstein-like manifolds which are not Einstein, Geom. Dedicata 7 (1978), 259–280.

[3] Jelonek, W., On A-tensors in Riemannian geometry, preprint PAN 551, 1995.

[4] Jelonek, W., K-contact A-manifolds, Colloq. Math. 75 (1) (1998), 97–103.

[5] Jelonek, W., Almost Kahler A-structures on twistor bundles, Ann. Glob. Anal. Geom. 17 (1999), 329–339.

[6] Kobayashi, S., Principal fibre bundles with the 1-dimensional toroidal group, Tohoku Math. J. 8 (1956), 29–45.

[7] Moroianu, A., Semmelmann, U., Twistor forms on Kahler manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. 2 (2003), 823–845.

[8] O’Neill, B., The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459–469.

[9] Pedersen, H., Todd, P., The Ledger curvature conditions and D’Atri geometry, Differential Geom. Appl. 11 (1999), 155–162.

[10] Sekigawa, K., Vanhecke, L., Symplectic geodesic symmetries on K¨ahler manifolds, Quart. J. Math. Oxford Ser. (2) 37 (1986), 95–103.

[11] Semmelmann, U., Conformal Killing forms on Riemannian manifolds, preprint, arXiv:math/0206117.

[12] Tang, Z., Yan, W., Isoparametric foliation and a problem of Besse on generalizations of Einstein condition, preprint, arXiv:math/1307.3807.

[13] Wang, M. Y., Ziller, W., Einstein metrics on torus bundles, J. Differential Geom. 31 (1990), 215–248.

[14] Zborowski, G., Construction of an A-manifold on a principal torus bundle, Ann. Univ. Paedagog. Crac. Stud. Math. 12 (2013), 5–19.