The natural transformations between r-tangent and r-cotangent bundles over Riemannian manifolds
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 68 (2014) no. 2.

Voir la notice de l'article provenant de la source Library of Science

If (M,g) is a Riemannian manifold, we have the well-known base preserving   vector bundle isomorphism TM=̃T^*M given by v→ g(v,-) between the tangent TM and the cotangent T^*M bundles of M. In the present note, we generalize this isomorphism to the one T^(r)M=̃ T^r*M between the r-th order vector tangent T^(r)M=(J^r(M,R)_0)^* and the r-th order cotangent T^r*M=J^r(M,R)_0 bundles of M. Next, we describe all base preserving  vector bundle maps C_M(g):T^(r)M→ T^r*M depending on a Riemannian metric g in terms of natural (in g) tensor fields on M.
@article{AUM_2014_68_2_a7,
     author = {Kurek, Jan and Mikulski, W{\l}odzimierz},
     title = {The natural transformations between r-tangent and r-cotangent bundles over {Riemannian} manifolds},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2014_68_2_a7/}
}
TY  - JOUR
AU  - Kurek, Jan
AU  - Mikulski, Włodzimierz
TI  - The natural transformations between r-tangent and r-cotangent bundles over Riemannian manifolds
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2014
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2014_68_2_a7/
LA  - en
ID  - AUM_2014_68_2_a7
ER  - 
%0 Journal Article
%A Kurek, Jan
%A Mikulski, Włodzimierz
%T The natural transformations between r-tangent and r-cotangent bundles over Riemannian manifolds
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2014
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2014_68_2_a7/
%G en
%F AUM_2014_68_2_a7
Kurek, Jan; Mikulski, Włodzimierz. The natural transformations between r-tangent and r-cotangent bundles over Riemannian manifolds. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 68 (2014) no. 2. http://geodesic.mathdoc.fr/item/AUM_2014_68_2_a7/

[1] Epstein, D. B. A., Natural tensors on Riemannian manifolds, J. Diff. Geom. 10 (1975), 631–645.

[2] Kobayashi, S., Nomizu, K., Foundations of Differential Geometry. Vol. I, J. Wiley- Interscience, New York–London, 1963.

[3] Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Defferential Geometry, Springer-Verlag, Berlin, 1993.

[4] Kolář, I., Vosmanská, G., Natural transformations of higher order tangent bundles and jet spaces, Čas. pĕst. mat. 114 (1989), 181–186.

[5] Kurek, J., Natural transformations of higher order cotangent bundle functors, Ann. Polon. Math. 58, no. 1 (1993), 29–35.

[6] Mikulski, W. M., Some natural operators on vector fields, Rend Math. Appl (7) 12, no. 3 (1992), 783–803.

[7] Nijenhuis, A., Natural bundles and their general properties Diff. Geom. in Honor of K. Yano, Kinokuniya, Tokyo (1972), 317–334.

[8] Paluszny, M., Zajtz, A., Foundation of the Geometry of Natural Bundles, Lect. Notes Univ. Caracas, 1984.