Renormings of \(c_0\) and the minimal displacement problem
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 68 (2014) no. 2.

Voir la notice de l'article provenant de la source Library of Science

The aim of this paper is to show that for every Banach space (X, ·) containing asymptotically isometric copy of the space c_0 there is a bounded, closed and convex set C ⊂ X with the Chebyshev radius r(C) = 1 such that for every k ≥ 1 there exists a k-contractive mapping T : C → C with x - Tx 1 − 1/k for any x ∈ C.
@article{AUM_2014_68_2_a5,
     author = {Piasecki, {\L}ukasz},
     title = {Renormings of \(c_0\) and the minimal displacement problem},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2014_68_2_a5/}
}
TY  - JOUR
AU  - Piasecki, Łukasz
TI  - Renormings of \(c_0\) and the minimal displacement problem
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2014
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2014_68_2_a5/
LA  - en
ID  - AUM_2014_68_2_a5
ER  - 
%0 Journal Article
%A Piasecki, Łukasz
%T Renormings of \(c_0\) and the minimal displacement problem
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2014
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2014_68_2_a5/
%G en
%F AUM_2014_68_2_a5
Piasecki, Łukasz. Renormings of \(c_0\) and the minimal displacement problem. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 68 (2014) no. 2. http://geodesic.mathdoc.fr/item/AUM_2014_68_2_a5/

[1] Bolibok, K., The minimal displacement problem in the space \(l_1\), Cent. Eur. J. Math. 10 (2012), 2211–2214.

[2] Bolibok, K., Constructions of lipschitzian mappings with non zero minimal displacement in spaces \(L_1 (0, 1)\) and \(L_2 (0, 1)\), Ann. Univ. Mariae Curie-Skłodowska Sec. A 50 (1996), 25–31.

[3] Dowling, P. N., Lennard C. J., Turett, B., Reflexivity and the fixed point property for nonexpansive maps, J. Math. Anal. Appl. 200 (1996), 653–662.

[4] Dowling, P. N., Lennard, C. J., Turett, B., Some fixed point results in \(l_1\) and \(c_0\), Nonlinear Anal. 39 (2000), 929–936.

[5] Dowling, P. N., Lennard C. J., Turett , B., Asymptotically isometric copies of \(c_0\) in Banach spaces, J. Math. Anal. Appl. 219 (1998), 377–391.

[6] Goebel, K., On the minimal displacement of points under lipschitzian mappings, Pacific J. Math. 45 (1973), 151–163.

[7] Goebel, K., Concise Course on Fixed Point Theorems, Yokohama Publishers, Yokohama, 2002.

[8] Goebel, K., Kirk, W. A., Topics in metric fixed point theory, Cambridge University Press, Cambridge, 1990.

[9] Goebel, K., Marino, G., Muglia, L., Volpe, R., The retraction constant and minimal displacement characteristic of some Banach spaces, Nonlinear Anal. 67 (2007), 735– 744.

[10] James, R. C., Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), 542– 550.

[11] Kirk, W. A., Sims, B. (Eds.), Handbook of Metric Fixed Point Theory, Kluwer Academic Publishers, Dordrecht, 2001.

[12] Lin, P. K., Sternfeld, Y., Convex sets with the Lipschitz fixed point property are compact, Proc. Amer. Math. Soc. 93 (1985), 633–639.

[13] Piasecki, Ł., Retracting a ball onto a sphere in some Banach spaces, Nonlinear Anal. 74 (2011), 396–399.