On the adjacent eccentric distance sum of graphs
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 68 (2014) no. 2.

Voir la notice de l'article provenant de la source Library of Science

In this paper we show bounds for the adjacent eccentric distance sum of graphs in terms of Wiener index, maximum degree and minimum degree. We extend some earlier results of Hua and Yu [Bounds for the Adjacent Eccentric Distance Sum, International Mathematical Forum, Vol. 7 (2002) no. 26, 1289–1294]. The adjacent eccentric distance sum index of the graph G is defined as ξ ^sv (G)= ∑_v∈ V(G)ε (v) D(v)/deg(v), where ε(v) is the eccentricity of the vertex v, deg(v) is the degree of the vertex v and D(v)=∑_u∈ V(G)d(u,v) is the sum of all distances from the vertex v.
@article{AUM_2014_68_2_a4,
     author = {Bielak, Halina and Wolska, Katarzyna},
     title = {On the adjacent eccentric distance sum of graphs},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2014_68_2_a4/}
}
TY  - JOUR
AU  - Bielak, Halina
AU  - Wolska, Katarzyna
TI  - On the adjacent eccentric distance sum of graphs
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2014
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2014_68_2_a4/
LA  - en
ID  - AUM_2014_68_2_a4
ER  - 
%0 Journal Article
%A Bielak, Halina
%A Wolska, Katarzyna
%T On the adjacent eccentric distance sum of graphs
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2014
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2014_68_2_a4/
%G en
%F AUM_2014_68_2_a4
Bielak, Halina; Wolska, Katarzyna. On the adjacent eccentric distance sum of graphs. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 68 (2014) no. 2. http://geodesic.mathdoc.fr/item/AUM_2014_68_2_a4/

[1] Bondy, J. A., Murty, U. S. R., Graph Theory with Applications, Macmillan London and Elsevier, New York, 1976.

[2] Gupta, S., Singh, M., Madan, A. K., Application of graph theory: Relations of eccentric connectivity index and Wiener’s index with anti-inflammatory activity, J. Math. Anal. Appl. 266 (2002), 259–268.

[3] Gupta, S., Singh, M., Madan, A. K., Eccentric distance sum: A novel graph invariant for predicting biological and physical properties, J. Math. Anal. Appl. 275 (2002), 386–401.

[4] Hua, H., Yu, G., Bounds for the Adjacent Eccentric Distance Sum, Int. Math. Forum, 7, no. 26 (2002), 1289–1294.

[5] Ilic, A., Eccentic connectivity index, Gutman, I., Furtula, B., (Eds.) Novel Molecular Structure Descriptors – Theory and Applications II, Math. Chem. Monogr., vol. 9, University of Kragujevac, 2010.

[6] Ilic, A., Yu, G., Feng, L., On eccentric distance sum of graphs, J. Math. Anal. Appl. 381 (2011), 590–600.

[7] Sardana, S., Madan, A. K., Predicting anti-HIV activity of TIBO derivatives: a computational approach using a novel topological descriptor, J. Mol. Model 8 (2000), 258–265.

[8] Yu, G., Feng, L., Ilic, A., On the eccentric distance sum of trees and unicyclic graphs, J. Math. Anal. Appl. 375 (2011), 99–107.