Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2014_68_2_a4, author = {Bielak, Halina and Wolska, Katarzyna}, title = {On the adjacent eccentric distance sum of graphs}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {68}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2014_68_2_a4/} }
Bielak, Halina; Wolska, Katarzyna. On the adjacent eccentric distance sum of graphs. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 68 (2014) no. 2. http://geodesic.mathdoc.fr/item/AUM_2014_68_2_a4/
[1] Bondy, J. A., Murty, U. S. R., Graph Theory with Applications, Macmillan London and Elsevier, New York, 1976.
[2] Gupta, S., Singh, M., Madan, A. K., Application of graph theory: Relations of eccentric connectivity index and Wiener’s index with anti-inflammatory activity, J. Math. Anal. Appl. 266 (2002), 259–268.
[3] Gupta, S., Singh, M., Madan, A. K., Eccentric distance sum: A novel graph invariant for predicting biological and physical properties, J. Math. Anal. Appl. 275 (2002), 386–401.
[4] Hua, H., Yu, G., Bounds for the Adjacent Eccentric Distance Sum, Int. Math. Forum, 7, no. 26 (2002), 1289–1294.
[5] Ilic, A., Eccentic connectivity index, Gutman, I., Furtula, B., (Eds.) Novel Molecular Structure Descriptors – Theory and Applications II, Math. Chem. Monogr., vol. 9, University of Kragujevac, 2010.
[6] Ilic, A., Yu, G., Feng, L., On eccentric distance sum of graphs, J. Math. Anal. Appl. 381 (2011), 590–600.
[7] Sardana, S., Madan, A. K., Predicting anti-HIV activity of TIBO derivatives: a computational approach using a novel topological descriptor, J. Mol. Model 8 (2000), 258–265.
[8] Yu, G., Feng, L., Ilic, A., On the eccentric distance sum of trees and unicyclic graphs, J. Math. Anal. Appl. 375 (2011), 99–107.