On certain generalized q-Appell polynomial expansions
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 68 (2014) no. 2.

Voir la notice de l'article provenant de la source Library of Science

We study q-analogues of three Appell polynomials, the H-polynomials, the Apostol–Bernoulli and Apostol–Euler polynomials, whereby two new q-difference operators and the NOVA q-addition play key roles. The definitions of the new polynomials are by the generating function; like in our book, two forms, NWA and JHC are always given together with tables, symmetry relations and recurrence formulas. It is shown that the complementary argument theorems can be extended to the new polynomials as well as to some related polynomials. In order to find a certain formula, we introduce a q-logarithm. We conclude with a brief discussion of multiple q-Appell polynomials.
@article{AUM_2014_68_2_a1,
     author = {Ernst, Thomas},
     title = {On certain generalized {q-Appell} polynomial expansions},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2014_68_2_a1/}
}
TY  - JOUR
AU  - Ernst, Thomas
TI  - On certain generalized q-Appell polynomial expansions
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2014
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2014_68_2_a1/
LA  - en
ID  - AUM_2014_68_2_a1
ER  - 
%0 Journal Article
%A Ernst, Thomas
%T On certain generalized q-Appell polynomial expansions
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2014
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2014_68_2_a1/
%G en
%F AUM_2014_68_2_a1
Ernst, Thomas. On certain generalized q-Appell polynomial expansions. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 68 (2014) no. 2. http://geodesic.mathdoc.fr/item/AUM_2014_68_2_a1/

[1] Apostol, T. M., On the Lerch zeta function, Pacific J. Math. 1 (1951), 161–167.

[2] Dere, R., Simsek, Y., Srivastava, H. M., A unified presentation of three families of generalized Apostol type polynomials based upon the theory of the umbral calculus and the umbral algebra, J. Number Theory 133, no. 10 (2013), 3245–3263.

[3] Ernst, T., A comprehensive treatment of q-calculus, Birkhäuser, Basel, 2012.

[4] Ernst, T., q-Pascal and q-Wronskian matrices with implications to q-Appell polynomials, J. Discrete Math. 2013.

[5] Jordan, Ch., Calculus of finite differences, Third Edition, Chelsea Publishing Co., New York, 1950.

[6] Kim M., Hu S., A note on the Apostol–Bernoulli and Apostol–Euler polynomials, Publ. Math. Debrecen 5587 (2013), 1–16.

[7] Lee, D. W., On multiple Appell polynomials, Proc. Amer. Math. Soc. 139, no. 6 (2011), 2133–2141.

[8] Luo, Q.-M., Srivastava, H. M., Some generalizations of the Apostol–Bernoulli and Apostol–Euler polynomials, J. Math. Anal. Appl. 308, no. 1 (2005), 290–302.

[9] Luo, Q.-M., Srivastava, H. M., Some relationships between the Apostol–Bernoulli and Apostol–Euler polynomials, Comput. Math. Appl. 51, no. 3–4 (2006), 631–642.

[10] Luo, Q.-M., Apostol–Euler polynomials of higher order and Gaussian hypergeometric functions, Taiwanese J. Math. 10, no. 4 (2006), 917–925.

[11] Milne-Thomson, L. M., The Calculus of Finite Differences, Macmillan and Co., Ltd., London, 1951.

[12] Nørlund, N. E., Differenzenrechnung, Springer-Verlag, Berlin, 1924.

[13] Pintér, Á, Srivastava, H. M., Addition theorems for the Appell polynomials and the associated classes of polynomial expansions, Aequationes Math. 85, no. 3 (2013), 483–495.

[14] Sandor, J., Crstici, B., Handbook of number theory II, Kluwer Academic Publishers, Dordrecht, 2004.

[15] Srivastava, H. M., Özarslan, M. A., Kaanoglu, C., Some generalized Lagrange-based Apostol–Bernoulli, Apostol–Euler and Apostol–Genocchi polynomials, Russ. J. Math. Phys. 20, no. 1 (2013), 110–120.

[16] Wang, W., Wang, W., Some results on power sums and Apostol-type polynomials, Integral Transforms Spec. Funct. 21, no. 3–4 (2010), 307–318.

[17] Ward, M., A calculus of sequences, Amer. J. Math. 58 (1936), 255–266.