Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2014_68_2_a1, author = {Ernst, Thomas}, title = {On certain generalized {q-Appell} polynomial expansions}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {68}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2014_68_2_a1/} }
Ernst, Thomas. On certain generalized q-Appell polynomial expansions. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 68 (2014) no. 2. http://geodesic.mathdoc.fr/item/AUM_2014_68_2_a1/
[1] Apostol, T. M., On the Lerch zeta function, Pacific J. Math. 1 (1951), 161–167.
[2] Dere, R., Simsek, Y., Srivastava, H. M., A unified presentation of three families of generalized Apostol type polynomials based upon the theory of the umbral calculus and the umbral algebra, J. Number Theory 133, no. 10 (2013), 3245–3263.
[3] Ernst, T., A comprehensive treatment of q-calculus, Birkhäuser, Basel, 2012.
[4] Ernst, T., q-Pascal and q-Wronskian matrices with implications to q-Appell polynomials, J. Discrete Math. 2013.
[5] Jordan, Ch., Calculus of finite differences, Third Edition, Chelsea Publishing Co., New York, 1950.
[6] Kim M., Hu S., A note on the Apostol–Bernoulli and Apostol–Euler polynomials, Publ. Math. Debrecen 5587 (2013), 1–16.
[7] Lee, D. W., On multiple Appell polynomials, Proc. Amer. Math. Soc. 139, no. 6 (2011), 2133–2141.
[8] Luo, Q.-M., Srivastava, H. M., Some generalizations of the Apostol–Bernoulli and Apostol–Euler polynomials, J. Math. Anal. Appl. 308, no. 1 (2005), 290–302.
[9] Luo, Q.-M., Srivastava, H. M., Some relationships between the Apostol–Bernoulli and Apostol–Euler polynomials, Comput. Math. Appl. 51, no. 3–4 (2006), 631–642.
[10] Luo, Q.-M., Apostol–Euler polynomials of higher order and Gaussian hypergeometric functions, Taiwanese J. Math. 10, no. 4 (2006), 917–925.
[11] Milne-Thomson, L. M., The Calculus of Finite Differences, Macmillan and Co., Ltd., London, 1951.
[12] Nørlund, N. E., Differenzenrechnung, Springer-Verlag, Berlin, 1924.
[13] Pintér, Á, Srivastava, H. M., Addition theorems for the Appell polynomials and the associated classes of polynomial expansions, Aequationes Math. 85, no. 3 (2013), 483–495.
[14] Sandor, J., Crstici, B., Handbook of number theory II, Kluwer Academic Publishers, Dordrecht, 2004.
[15] Srivastava, H. M., Özarslan, M. A., Kaanoglu, C., Some generalized Lagrange-based Apostol–Bernoulli, Apostol–Euler and Apostol–Genocchi polynomials, Russ. J. Math. Phys. 20, no. 1 (2013), 110–120.
[16] Wang, W., Wang, W., Some results on power sums and Apostol-type polynomials, Integral Transforms Spec. Funct. 21, no. 3–4 (2010), 307–318.
[17] Ward, M., A calculus of sequences, Amer. J. Math. 58 (1936), 255–266.