Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2014_68_2_a0, author = {Kryczka, Andrzej}, title = {Deviation from weak {Banach{\textendash}Saks} property for countable direct sums}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {68}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2014_68_2_a0/} }
Kryczka, Andrzej. Deviation from weak Banach–Saks property for countable direct sums. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 68 (2014) no. 2. http://geodesic.mathdoc.fr/item/AUM_2014_68_2_a0/
[1] Banach, S., Saks, S., Sur la convergence forte dans les champs Lp, Studia Math. 2 (1930), 51–57.
[2] Beauzamy, B., Banach–Saks properties and spreading models, Math. Scand. 44 (1979), 357–384.
[3] Brunel, A., Sucheston, L., On B-convex Banach spaces, Math. Systems Theory 7 (1974), 294–299.
[4] Erdös, P., Magidor, M., A note on regular methods of summability and the Banach– Saks property, Proc. Amer. Math. Soc. 59 (1976), 232–234.
[5] Krassowska, D., Płuciennik, R., A note on property (H) in Köthe–Bochner sequence spaces, Math. Japon. 46 (1997), 407–412.
[6] Krein, S. G., Petunin, Yu. I., Semenov, E. M., Interpolation of linear operators, Translations of Mathematical Monographs, 54. American Mathematical Society, Providence, R.I., 1982.
[7] Kryczka, A., Alternate signs Banach–Saks property and real interpolation of operators, Proc. Amer. Math. Soc. 136 (2008), 3529–3537.
[8] Kryczka, A., Mean separations in Banach spaces under abstract interpolation and extrapolation, J. Math. Anal. Appl. 407 (2013), 281–289.
[9] Lin, P.-K., Köthe–Bochner function spaces, Birkhäuser Boston, Inc., Boston, MA, 2004.
[10] Lindenstrauss, J., Tzafriri, L., Classical Banach spaces. II. Function spaces, Springer- Verlag, Berlin–New York, 1979.
[11] Mastyło, M., Interpolation spaces not containing l1, J. Math. Pures Appl. 68 (1989), 153–162.
[12] Partington, J. R., On the Banach–Saks property, Math. Proc. Cambridge Philos. Soc. 82 (1977), 369–374.
[13] Rosenthal, H. P., Weakly independent sequences and the Banach–Saks property, Bull. London Math. Soc. 8 (1976), 22–24.
[14] Szlenk, W., Sur les suites faiblement convergentes dans l’espace L, Studia Math. 25 (1965), 337–341.