The Turán number of the graph \(3P_4\)
Annales Universitatis Mariae Curie-Skłodowska. Mathematica, Tome 68 (2014) no. 1
Cet article a éte moissonné depuis la source Library of Science
Let ex(n, G) denote the maximum number of edges in a graph on n vertices which does not contain G as a subgraph. Let P_i denote a path consisting of i vertices and let mP_i denote m disjoint copies of P_i. In this paper we count ex(n, 3P_4).
@article{AUM_2014_68_1_a6,
author = {Bielak, Halina and Kieliszek, Sebastian},
title = {The {Tur\'an} number of the graph {\(3P_4\)}},
journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica},
year = {2014},
volume = {68},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUM_2014_68_1_a6/}
}
Bielak, Halina; Kieliszek, Sebastian. The Turán number of the graph \(3P_4\). Annales Universitatis Mariae Curie-Skłodowska. Mathematica, Tome 68 (2014) no. 1. http://geodesic.mathdoc.fr/item/AUM_2014_68_1_a6/
[1] Bushaw, N., Kettle, N., Turán numbers of multiple paths and equibipartite forests, Combin. Probab. Comput. 20 (2011), 837-853.
[2] Erdős, P., Gallai, T., On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959), 337-356.
[3] Faudree, R. J., Schelp, R. H., Path Ramsey numbers in multicolorings, J. Combin. Theory Ser. B 19 (1975), 150-160.
[4] Gorgol, I., Turán numbers for disjoint copies of graphs, Graphs Combin. 27 (2011), 661-667.
[5] Harary, F., Graph Theory, Addison-Wesley, Mass.-Menlo Park, Calif.-London, 1969.