On the birational gonalities of smooth curves
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 68 (2014) no. 1.

Voir la notice de l'article provenant de la source Library of Science

Let C be a smooth curve of genus g. For each positive integer r the birational r-gonality s_r(C) of C is the minimal integer t such that there is L∈^t(C) with h^0(C,L) =r+1. Fix an integer r≥ 3. In this paper we prove the existence of an integer g_r such that for every integer g≥ g_r there is a smooth curve C of genus g with s_r+1(C)/(r+1) gt; s_r(C)/r, i.e. in the sequence of all birational gonalities of C at least one of the slope inequalities fails.
@article{AUM_2014_68_1_a2,
     author = {Ballico, E.},
     title = {On the birational gonalities of smooth curves},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2014_68_1_a2/}
}
TY  - JOUR
AU  - Ballico, E.
TI  - On the birational gonalities of smooth curves
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2014
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2014_68_1_a2/
LA  - en
ID  - AUM_2014_68_1_a2
ER  - 
%0 Journal Article
%A Ballico, E.
%T On the birational gonalities of smooth curves
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2014
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2014_68_1_a2/
%G en
%F AUM_2014_68_1_a2
Ballico, E. On the birational gonalities of smooth curves. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 68 (2014) no. 1. http://geodesic.mathdoc.fr/item/AUM_2014_68_1_a2/

[1] Coppens, M., Martens, G., Linear series on 4-gonal curves, Math. Nachr. 213, no. 1 (2000), 35–55.

[2] Eisenbud, D., Harris, J., On varieties of minimal degree (a centennial account), Algebraic Geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), 3–13, Proc. Sympos. Pure Math., 46, Part 1, Amer. Math. Soc., Providence, RI, 1987.

[3] Harris, J., Eisenbud, D., Curves in projective space, Séminaire de Mathématiques Supérieures, 85, Presses de l’Université de Montréal, Montréal, Que., 1982.

[4] Hatshorne, R., Algebraic Geometry, Springer-Verlag, Berlin, 1977.

[5] Laface, A., On linear systems of curves on rational scrolls, Geom. Dedicata 90, no. 1 (2002), 127–144; generalized version in arXiv:math/0205271v2.

[6] Lange, H., Martens, G., On the gonality sequence of an algebraic curve, Manuscripta Math. 137 (2012), 457–473.