A fixed point theoremfor nonexpansive compact self-mapping
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 68 (2014) no. 1.

Voir la notice de l'article provenant de la source Library of Science

A mapping T from a topological space X to a topological space Y is said to be compact if T(X) is contained in a compact subset of Y . The aim of this paper is to prove the existence of fixed points of a nonexpansive compact self-mapping defined on a closed subset having a contractive jointly continuous family when the underlying space is a metric space. The proved result generalizes and extends several known results on the subject.
@article{AUM_2014_68_1_a0,
     author = {Narang, T. D.},
     title = {A fixed point theoremfor nonexpansive compact self-mapping},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2014_68_1_a0/}
}
TY  - JOUR
AU  - Narang, T. D.
TI  - A fixed point theoremfor nonexpansive compact self-mapping
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2014
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2014_68_1_a0/
LA  - en
ID  - AUM_2014_68_1_a0
ER  - 
%0 Journal Article
%A Narang, T. D.
%T A fixed point theoremfor nonexpansive compact self-mapping
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2014
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2014_68_1_a0/
%G en
%F AUM_2014_68_1_a0
Narang, T. D. A fixed point theoremfor nonexpansive compact self-mapping. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 68 (2014) no. 1. http://geodesic.mathdoc.fr/item/AUM_2014_68_1_a0/

[1] Agarwal, R. P., Meehan, M., O’Regan, D., Fixed Point Theory and Applications, Cambridge University Press, Cambridge, 2001.

[2] Beg, I., Abbas, M., Fixed points and best approximation in Menger convex metric spaces, Arch. Math. (Brno) 41 (2005), 389-397.

[3] Beg, I., Shahzad, N., Iqbal, M., Fixed point theorems and best approximation in convex metric spaces, J. Approx. Theory 8 (1992), 97-105.

[4] Dotson Jr., W. G., Fixed-point theorems for nonexpansive mappings on starshaped subset of Banach spaces, J. London Math. Soc. 2 (1972), 408-410.

[5] Dotson Jr., W. G., On fixed points of nonexpansive mappings in nonconvex sets, Proc. Amer. Math. Soc. 38 (1973), 155-156.

[6] Dugundji, J., Granas, A., Fixed Point Theory, PWN-Polish Sci. Publ., Warszawa, 1982.

[7] Goebel, K., Kirk, W. A., Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990.

[8] Guay, M. D., Singh, K.L., Whitfield, J. H. M., Fixed point theorems for nonexpansive mappings in convex metric spaces, Proc. Conference on nonlinear analysis (Ed. S.P. Singh and J.H. Bury), Marcel Dekker, New York, 1982, 179-189.

[9] Habiniak, L., Fixed point theory and invariant approximations, J. Approx. Theory 56 (1989), 241-244.

[10] Singh, S., Watson, B., Srivastava, P., Fixed Point Theory and Best Approximation: The KKM-map Principle, Kluwer Academic Publishers, Dordrecht, 1997.

[11] Schauder, J., Der fixpunktsatz in funktionaraumen, Studia Math. 2 (1930), 171-180.

[12] Takahashi, W., A convexity in metric space and nonexpansive mappings, I, Kodai Math. Sem. Rep. 22 (1970), 142-149.