Some results on local fields
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 67 (2013) no. 2.

Voir la notice de l'article provenant de la source Library of Science

Let K be a local field with finite residue field of characteristic p. This paper is devoted to the study of the maximal abelian extension of K of exponent p-1 and its maximal p-abelian extension, especially the description of their Galois groups in solvable case. Then some properties of local fields in general case are studied too.
Keywords: Local fields, local number fields, Wild ramification, intermediate extension, standard p-over-extensions, semi-direct product, inertia group.
@article{AUM_2013_67_2_a6,
     author = {Lbekkouri, Akram},
     title = {Some results on local fields},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2013_67_2_a6/}
}
TY  - JOUR
AU  - Lbekkouri, Akram
TI  - Some results on local fields
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2013
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2013_67_2_a6/
LA  - en
ID  - AUM_2013_67_2_a6
ER  - 
%0 Journal Article
%A Lbekkouri, Akram
%T Some results on local fields
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2013
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2013_67_2_a6/
%G en
%F AUM_2013_67_2_a6
Lbekkouri, Akram. Some results on local fields. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 67 (2013) no. 2. http://geodesic.mathdoc.fr/item/AUM_2013_67_2_a6/

[1] Abbes, A., Saito, T., Ramification of local fields with imperfect residue fields, Amer. J. Math. 124 (5) (2002), 879–920.

[2] Artin, E., Galois Theory, Univ. of Notre Dame Press, Notre Dame, 1942.

[3] Hazewinkel, M., Local class field theory is easy, Adv. Math. 18 (1975), 148–181.

[4] Lbekkouri, A., On the construction of normal wildly ramified over \(\mathbb{Q}_p\), (\(p \neq 2\)), Arch. Math. (Basel) 93 (2009), 331–344.

[5] Ribes, L., Zalesskii, P., Profinite Groups, Springer-Verlag, Berlin, 2000.

[6] Rotman, J. J., An Introduction to the Theory of Group, Springer-Verlag, New York, 1995.

[7] Serre, J.-P., Local Fields, Springer-Verlag, New York–Berlin, 1979.

[8] Zariski, O., Samuel, P., Commutative Algebra. Volume II, Springer-Verlag, New York–Heidelberg, 1975.

[9] Zhukov, I. B., On ramification theory in the imperfect residue field case, Preprint No. 98-02, Nottingham Univ., 1998. Proceedings of the conference: Ramification Theory of Arithmetic Schemes (Luminy, 1999) (ed. B. Erez), http://family239.narod.ru/math/publ.htm.