Location of the critical points of certain polynomials
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 67 (2013) no. 2.

Voir la notice de l'article provenant de la source Library of Science

Let 𝔻 denote the unit disk {z:|z| lt;1} in the complex plane ℂ. In this paper, we study a family of polynomials P with only one zero lying outside 𝔻.  We establish  criteria for P to satisfy implying that each of P and P'  has exactly one critical point outside 𝔻.
Keywords: Polynomial, critical point, anti-reciprocal.
@article{AUM_2013_67_2_a3,
     author = {Chaiya, Somjate and Hinkkanen, Aimo},
     title = {Location of the critical points of certain polynomials},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2013_67_2_a3/}
}
TY  - JOUR
AU  - Chaiya, Somjate
AU  - Hinkkanen, Aimo
TI  - Location of the critical points of certain polynomials
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2013
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2013_67_2_a3/
LA  - en
ID  - AUM_2013_67_2_a3
ER  - 
%0 Journal Article
%A Chaiya, Somjate
%A Hinkkanen, Aimo
%T Location of the critical points of certain polynomials
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2013
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2013_67_2_a3/
%G en
%F AUM_2013_67_2_a3
Chaiya, Somjate; Hinkkanen, Aimo. Location of the critical points of certain polynomials. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 67 (2013) no. 2. http://geodesic.mathdoc.fr/item/AUM_2013_67_2_a3/

[1] Boyd, D. W., Small Salem numbers, Duke Math. J. 44 (1977), 315–328.

[2] Bertin, M. J., Decomps-Guilloux, A., Grandet-Hugot, M., Pathiaux-Delefosse, M., Schreiber, J. P., Pisot and Salem Numbers, Birkhauser Verlag, Basel, 1992.

[3] Chaiya, S., Complex dynamics and Salem numbers, Ph.D. Thesis, University of Illinois at Urbana–Champaign, 2008.

[4] Palka, Bruce P., An Introduction to Complex Function Theory, Springer-Verlag, New York, 1991.

[5] Rahman, Q. I., Schmeisser, G., Analytic Theory of Polynomials, Clarendon Press, Oxford, 2002.

[6] Salem, R., Power series with integral coefficients, Duke Math. J. 12 (1945), 153–173.

[7] Salem, R., Algebraic Numbers and Fourier Analysis, D. C. Heath and Co., Boston, Mass., 1963.

[8] Sheil-Small, T., Complex Polynomials, Cambridge University Press, Cambridge, 2002.

[9] Walsh, J. L., Sur la position des racines des derivees d’un polynome, C. R. Acad. Sci. Paris 172 (1921), 662–664.