Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2013_67_2_a1, author = {Selvaraj, C. and Babu, O. S. and Murugusundaramoorthy, G.}, title = {Coefficient bounds for some subclasses of p-valently starlike functions}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {67}, number = {2}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2013_67_2_a1/} }
TY - JOUR AU - Selvaraj, C. AU - Babu, O. S. AU - Murugusundaramoorthy, G. TI - Coefficient bounds for some subclasses of p-valently starlike functions JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2013 VL - 67 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2013_67_2_a1/ LA - en ID - AUM_2013_67_2_a1 ER -
%0 Journal Article %A Selvaraj, C. %A Babu, O. S. %A Murugusundaramoorthy, G. %T Coefficient bounds for some subclasses of p-valently starlike functions %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2013 %V 67 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUM_2013_67_2_a1/ %G en %F AUM_2013_67_2_a1
Selvaraj, C.; Babu, O. S.; Murugusundaramoorthy, G. Coefficient bounds for some subclasses of p-valently starlike functions. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 67 (2013) no. 2. http://geodesic.mathdoc.fr/item/AUM_2013_67_2_a1/
[1] Ali, R. M., Ravichandran, V., Seenivasagan, N., Coefficient bounds for p-valent functions, Appl. Math. Comput. 187 (2007), 35–46.
[2] Janowski, W., Some extremal problems for certain families of analytic functions, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 21 (1973), 17–25.
[3] Keogh, F. R., Merkes, E. P., A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8–12.
[4] Ma, W. C., Minda, D., A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis (Tianjin, 1992), Int. Press, Cambridge, MA, 1994, 157–169.
[5] Owa, S., On the distortion theorem. I, Kyungpook Math. J. 18 (1) (1978), 53–59.
[6] Owa, S., Srivastava, H. M., Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39 (5) (1987), 1057–1077.
[7] Patel, J., Mishra, A., On certain subclasses of multivalent functions associated with an extended differintegral operator, J. Math. Anal. Appl. 332 (2007), 109–122.
[8] Prokhorov, D. V., Szynal, J., Inverse coefficients for \((\alpha, \beta)\)-convex functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 35 (1981), 125–143.
[9] Selvaraj, C., Selvakumaran, K. A., Fekete–Szego problem for some subclass of analytic functions, Far East J. Math. Sci. (FJMS) 29 (3) (2008), 643–652.
[10] Srivastava, H. M., Mishra, A. K., Das, M. K., The Fekete–Szego problem for a subclass of close-to-convex functions, Complex Variables Theory Appl. 44 (2) (2001), 145–163.
[11] Srivastava, H. M., Owa, S., An application of the fractional derivative, Math. Japon. 29 (3) (1984), 383–389.
[12] Srivastava, H. M., Owa, S., Univalent Functions, Fractional Calculus and their Applications, Halsted Press/John Wiley Sons, Chichester–New York, 1989.