Coefficient bounds for some subclasses of p-valently starlike functions
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 67 (2013) no. 2.

Voir la notice de l'article provenant de la source Library of Science

For functions of the form f(z) = z^p + ∑_n = 1^∞ a_p + n z^p + n we obtain sharp bounds for some coefficients functionals in certain subclasses of starlike functions. Certain applications of our main results are also given. In particular, Fekete-Szego-like inequality for classes of functions defined through extended fractional differintegrals are obtained.
Keywords: Analytic functions, starlike functions, convex functions, p-valent functions, subordination, convolution, Fekete-Szego inequality.
@article{AUM_2013_67_2_a1,
     author = {Selvaraj, C. and Babu, O. S. and Murugusundaramoorthy, G.},
     title = {Coefficient bounds for some subclasses of p-valently starlike functions},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2013_67_2_a1/}
}
TY  - JOUR
AU  - Selvaraj, C.
AU  - Babu, O. S.
AU  - Murugusundaramoorthy, G.
TI  - Coefficient bounds for some subclasses of p-valently starlike functions
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2013
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2013_67_2_a1/
LA  - en
ID  - AUM_2013_67_2_a1
ER  - 
%0 Journal Article
%A Selvaraj, C.
%A Babu, O. S.
%A Murugusundaramoorthy, G.
%T Coefficient bounds for some subclasses of p-valently starlike functions
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2013
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2013_67_2_a1/
%G en
%F AUM_2013_67_2_a1
Selvaraj, C.; Babu, O. S.; Murugusundaramoorthy, G. Coefficient bounds for some subclasses of p-valently starlike functions. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 67 (2013) no. 2. http://geodesic.mathdoc.fr/item/AUM_2013_67_2_a1/

[1] Ali, R. M., Ravichandran, V., Seenivasagan, N., Coefficient bounds for p-valent functions, Appl. Math. Comput. 187 (2007), 35–46.

[2] Janowski, W., Some extremal problems for certain families of analytic functions, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 21 (1973), 17–25.

[3] Keogh, F. R., Merkes, E. P., A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8–12.

[4] Ma, W. C., Minda, D., A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis (Tianjin, 1992), Int. Press, Cambridge, MA, 1994, 157–169.

[5] Owa, S., On the distortion theorem. I, Kyungpook Math. J. 18 (1) (1978), 53–59.

[6] Owa, S., Srivastava, H. M., Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39 (5) (1987), 1057–1077.

[7] Patel, J., Mishra, A., On certain subclasses of multivalent functions associated with an extended differintegral operator, J. Math. Anal. Appl. 332 (2007), 109–122.

[8] Prokhorov, D. V., Szynal, J., Inverse coefficients for \((\alpha, \beta)\)-convex functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 35 (1981), 125–143.

[9] Selvaraj, C., Selvakumaran, K. A., Fekete–Szego problem for some subclass of analytic functions, Far East J. Math. Sci. (FJMS) 29 (3) (2008), 643–652.

[10] Srivastava, H. M., Mishra, A. K., Das, M. K., The Fekete–Szego problem for a subclass of close-to-convex functions, Complex Variables Theory Appl. 44 (2) (2001), 145–163.

[11] Srivastava, H. M., Owa, S., An application of the fractional derivative, Math. Japon. 29 (3) (1984), 383–389.

[12] Srivastava, H. M., Owa, S., Univalent Functions, Fractional Calculus and their Applications, Halsted Press/John Wiley Sons, Chichester–New York, 1989.