Linearly-invariant families and generalized Meixner–Pollaczek polynomials
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 67 (2013) no. 1.

Voir la notice de l'article provenant de la source Library of Science

The extremal functions  f_0(z)  realizing the maxima of some functionals (e.g. max|a_3|, and  maxarg f^'(z)) within the so-called universal linearly invariant family U_α (in the sense of Pommerenke [10]) have such a form that f_0^'(z)  looks similar to generating function for Meixner-Pollaczek (MP) polynomials [2], [8]. This fact gives motivation for the definition and study of the generalized Meixner-Pollaczek (GMP) polynomials P_n^λ(x;θ,ψ) of a real variable x as coefficients of G^λ(x;θ,ψ;z)=1/(1-ze^iθ)^λ-ix(1-ze^iψ)^λ+ix=∑_n=0^∞ P_n^λ (x;θ,ψ)z^n, |z| lt;1, where the parameters λ, θ, ψ satisfy the conditions: λ gt; 0, θ∈ (0,π), ψ∈ℝ. In the case ψ=-θ we have the well-known (MP) polynomials. The cases ψ=π-θ and ψ=π+θ leads to new sets of polynomials which we call quasi-Meixner-Pollaczek polynomials and strongly symmetric Meixner-Pollaczek polynomials. If  x=0,  then we have an obvious generalization of the Gegenbauer polynomials.The properties of (GMP) polynomials as well as of some families of holomorphic functions  |z| lt;1  defined by the Stieltjes-integral formula, where the function  zG^λ(x; θ, ψ;z) is a kernel, will be discussed.
@article{AUM_2013_67_1_a2,
     author = {Naraniecka, Iwona and Szynal, Jan and Tatarczak, Anna},
     title = {Linearly-invariant families and generalized {Meixner{\textendash}Pollaczek} polynomials},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2013_67_1_a2/}
}
TY  - JOUR
AU  - Naraniecka, Iwona
AU  - Szynal, Jan
AU  - Tatarczak, Anna
TI  - Linearly-invariant families and generalized Meixner–Pollaczek polynomials
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2013
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2013_67_1_a2/
LA  - en
ID  - AUM_2013_67_1_a2
ER  - 
%0 Journal Article
%A Naraniecka, Iwona
%A Szynal, Jan
%A Tatarczak, Anna
%T Linearly-invariant families and generalized Meixner–Pollaczek polynomials
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2013
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2013_67_1_a2/
%G en
%F AUM_2013_67_1_a2
Naraniecka, Iwona; Szynal, Jan; Tatarczak, Anna. Linearly-invariant families and generalized Meixner–Pollaczek polynomials. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 67 (2013) no. 1. http://geodesic.mathdoc.fr/item/AUM_2013_67_1_a2/

[1] Araaya, T. K., The symmetric Meixner–Pollaczek polynomials, Uppsala Dissertations in Mathematics, Department of Mathematics, Uppsala University, 2003.

[2] Chihara, T. S., An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.

[3] Duren, P. L., Univalent Functions, Springer, New York, 1983.

[4] Erdelyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G., Higher Transcendental Functions, vol. I, McGraw-Hill Book Company, New York, 1953.

[5] Golusin, G., Geometric Theory of Functions of a Complex Variable, Translations of Mathematical Monographs, no. 26, Amer. Math. Soc., Providence, R.I., 1969.

[6] Ismail, M., On sieved ultraspherical polynomials I: Symmetric Pollaczek analogues, SIAM J. Math. Anal. 16 (1985), 1093–1113.

[7] Kiepiela, K., Naraniecka, I., Szynal, J., The Gegenbauer polynomials and typically real functions, J. Comp. Appl. Math 153 (2003), 273–282.

[8] Koekoek, R., Swarttouw, R. F., The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Report 98-17, Delft University of Technology, 1998.

[9] Koornwinder, T. H., Meixner–Pollaczek polynomials and the Heisenberg algebra, J. Math. Phys. 30 (4) (1989), 767–769.

[10] Pommerenke, Ch., Linear-invariant Familien analytischer Funktionen, Mat. Ann. 155 (1964), 108–154.

[11] Poularikas, A. D., The Mellin Transform, The Handbook of Formulas and Tables for Signal Processing, CRC Press LLC, Boca Raton, 1999.

[12] Robertson, M. S., On the coefficients of typically-real functions, Bull. Amer. Math. Soc. 41 (1935), 565–572.

[13] Rogosinski, W. W., Uber positive harmonische Entwicklungen und typisch-reelle Potenzreihen, Math. Z. 35 (1932), 93–121.

[14] Starkov, V. V., The estimates of coefficients in locally-univalent family \(U_{\alpha}^{'}\), Vestnik Lenin. Gosud. Univ. 13 (1984), 48–54 (Russian).

[15] Starkov, V. V., Linear-invariant families of functions, Dissertation, Ekatirenburg, 1989, 1–287 (Russian).

[16] Szynal, J., An extension of typically-real functions, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 48 (1994), 193–201.

[17] Szynal, J., Waniurski, J., Some problems for linearly invariant families, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 30 (1976), 91–102.