Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2013_67_1_a2, author = {Naraniecka, Iwona and Szynal, Jan and Tatarczak, Anna}, title = {Linearly-invariant families and generalized {Meixner{\textendash}Pollaczek} polynomials}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {67}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2013_67_1_a2/} }
TY - JOUR AU - Naraniecka, Iwona AU - Szynal, Jan AU - Tatarczak, Anna TI - Linearly-invariant families and generalized Meixner–Pollaczek polynomials JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2013 VL - 67 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2013_67_1_a2/ LA - en ID - AUM_2013_67_1_a2 ER -
%0 Journal Article %A Naraniecka, Iwona %A Szynal, Jan %A Tatarczak, Anna %T Linearly-invariant families and generalized Meixner–Pollaczek polynomials %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2013 %V 67 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUM_2013_67_1_a2/ %G en %F AUM_2013_67_1_a2
Naraniecka, Iwona; Szynal, Jan; Tatarczak, Anna. Linearly-invariant families and generalized Meixner–Pollaczek polynomials. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 67 (2013) no. 1. http://geodesic.mathdoc.fr/item/AUM_2013_67_1_a2/
[1] Araaya, T. K., The symmetric Meixner–Pollaczek polynomials, Uppsala Dissertations in Mathematics, Department of Mathematics, Uppsala University, 2003.
[2] Chihara, T. S., An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
[3] Duren, P. L., Univalent Functions, Springer, New York, 1983.
[4] Erdelyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G., Higher Transcendental Functions, vol. I, McGraw-Hill Book Company, New York, 1953.
[5] Golusin, G., Geometric Theory of Functions of a Complex Variable, Translations of Mathematical Monographs, no. 26, Amer. Math. Soc., Providence, R.I., 1969.
[6] Ismail, M., On sieved ultraspherical polynomials I: Symmetric Pollaczek analogues, SIAM J. Math. Anal. 16 (1985), 1093–1113.
[7] Kiepiela, K., Naraniecka, I., Szynal, J., The Gegenbauer polynomials and typically real functions, J. Comp. Appl. Math 153 (2003), 273–282.
[8] Koekoek, R., Swarttouw, R. F., The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Report 98-17, Delft University of Technology, 1998.
[9] Koornwinder, T. H., Meixner–Pollaczek polynomials and the Heisenberg algebra, J. Math. Phys. 30 (4) (1989), 767–769.
[10] Pommerenke, Ch., Linear-invariant Familien analytischer Funktionen, Mat. Ann. 155 (1964), 108–154.
[11] Poularikas, A. D., The Mellin Transform, The Handbook of Formulas and Tables for Signal Processing, CRC Press LLC, Boca Raton, 1999.
[12] Robertson, M. S., On the coefficients of typically-real functions, Bull. Amer. Math. Soc. 41 (1935), 565–572.
[13] Rogosinski, W. W., Uber positive harmonische Entwicklungen und typisch-reelle Potenzreihen, Math. Z. 35 (1932), 93–121.
[14] Starkov, V. V., The estimates of coefficients in locally-univalent family \(U_{\alpha}^{'}\), Vestnik Lenin. Gosud. Univ. 13 (1984), 48–54 (Russian).
[15] Starkov, V. V., Linear-invariant families of functions, Dissertation, Ekatirenburg, 1989, 1–287 (Russian).
[16] Szynal, J., An extension of typically-real functions, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 48 (1994), 193–201.
[17] Szynal, J., Waniurski, J., Some problems for linearly invariant families, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 30 (1976), 91–102.