Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2013_67_1_a0, author = {Sola, Alan}, title = {Elementary examples of {Loewner} chains generated by densities}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {67}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2013_67_1_a0/} }
Sola, Alan. Elementary examples of Loewner chains generated by densities. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 67 (2013) no. 1. http://geodesic.mathdoc.fr/item/AUM_2013_67_1_a0/
[1] Berkson, E., Porta, H., Semigroups of analytic functions and composition operators, Michigan Math. J. 25 (1978), 101–115.
[2] Bracci, F., Contreras, M. D., Dıaz-Madrigal, S., Evolution families and the Loewner equation I: the unit disk, J. Reine Angew. Math., to appear.
[3] Bracci, F., Contreras, M. D., Dıaz-Madrigal, S., Regular poles and \(\beta\)-numbers in the theory of holomorphic semigroups, arxiv.org/abs/1201.4705.
[4] Carleson, L., Makarov, N., Aggregation in the plane and Loewner’s equation, Comm. Math. Phys. 216 (2001), 583–607.
[5] Carleson, L., Makarov, N., Laplacian path models. Dedicated to the memory of Thomas H. Wolff, J. Anal. Math. 87 (2002), 103–150.
[6] Contreras, M. D., Dıaz-Madrigal, S., Gumenyuk, P., Geometry behind Loewner chains, Complex Anal. Oper. Theory 4 (2010), 541–587.
[7] Contreras, M. D., Dıaz-Madrigal, S., Gumenyuk, P., Local duality in Loewner equations, arxiv.org/abs/1202.2334.
[8] Contreras, M. D., Dıaz-Madrigal, S., Pommerenke, Ch., On boundary critical points for semigroups of analytic functions, Math. Scand. 98 (2006), 125–142.
[9] Duran, M. A., Vasconcelos, G. L., Interface growth in two dimensions: A Loewner equation approach, Phys. Rev. E 82 (2010), 031601.
[10] Elin, M., Shoikhet, D., Linearization Models for Complex Dynamical Systems, Birkhauser Verlag, Basel, 2010.
[11] Gubiec, T., Szymczak, P., Fingered growth in channel geometry: A Loewner equation approach, Phys. Rev. E 77 (2008), 041602.
[12] Hastings, M., Levitov, L., Laplacian growth as one-dimensional turbulence, Phys. D: Nonlinear Phenomena 116 (1998), 244–252.
[13] Ivanov, G., Prokhorov, D., Vasil’ev, A., Singular solutions to the Loewner equation, Bull. Sci. Math. 136 (2012), 328–341.
[14] Johansson Viklund, F., Sola, A., Turner, A., Scaling limits of anisotropic Hastings-Levitov clusters, Ann. Inst. H. Poincar´e Probab. Stat. 48 (2012), 235–257.
[15] Kager, W., Nienhuis, B., Kadanoff, L. P., Exact solutions for Loewner evolutions, J. Statist. Phys. 115 (2004), 805–822.
[16] Kuznetsov, A., Boundary behaviour of Loewner chains, arxiv.org/abs/0705.4564.
[17] Lawler, G., Conformally Invariant Processes in the Plane, American Mathematical Society, Providence, 2005.
[18] Lind, J., A sharp condition for the Loewner equation to generate slits, Ann. Acad. Sci. Fenn. Math. 30 (2005), 143–158.
[19] Lind, J., Marshall, D. E., Rohde, S., Collisions and spirals of Loewner traces, Duke Math. J. 154 (2010), 527–573.
[20] Marshall, D. E., Rohde, S., The Loewner differential equation and slit mappings, J. Amer. Math. Soc. 18 (2005), 763–778.
[21] Pommerenke, Ch., Univalent Functions, Vandenhoeck Ruprecht, Gottingen, 1975.
[22] Pommerenke, Ch., Boundary Behavior of Conformal Maps, Springer-Verlag, Berlin–Heidelberg, 1992.
[23] Popescu, M. N., Hentschel, H. G. E., Family, F., Anisotropic diffusion-limited aggregation, Phys. Rev. E 69 (2004), 061403.
[24] Rohde, S., Zinsmeister, M., Some remarks on Laplacian growth, Topology Appl. 152 (2005), 26–43.
[25] Selander, G., Two deterministic growth models related to diffusion-limited aggregation. Doctoral dissertation, Thesis (Dr. Tech.), Kungliga Tekniska Hogskolan, 1999, pp. 101.
[26] Siskakis, A. G., Semi-groups of composition operators on spaces of analytic functions, a review, Studies on composition operators (Laramie, WY, 1996), 229–252, Contemp. Math., 213, Amer. Math. Soc., Providence, R.I., 1998.
[27] Vasil’ev, A., Evolution of conformal maps with quasiconformal extensions, Bull. Sci. Math. 129 (2005), 831–859.