On a result by Clunie and Sheil-Small
Annales Universitatis Mariae Curie-Skłodowska. Mathematica, Tome 66 (2012) no. 2
Cet article a éte moissonné depuis la source Library of Science
In 1984 J. Clunie and T. Sheil-Small proved ([2, Corollary 5.8]) that for any complex-valued and sense-preserving injective harmonic mapping F in the unit disk 𝔻, if F(𝔻) is a convex domain, then the inequality |G(z_2)-G(z_1)| lt; |H(z_2)- H(z_1)| holds for all distinct points z_1, z_2 ∈𝔻. Here H and G are holomorphic mappings in 𝔻 determined by F = H + G, up to a constant function. We extend this inequality by replacing the unit disk by an arbitrary nonempty domain Ω in ℂ and improve it provided F is additionally a quasiconformal mapping in Ω.
Keywords:
Harmonic mappings, Lipschitz condition, bi-Lipchitz condition, co-Lipchitz condition, quasiconformal mappings
@article{AUM_2012_66_2_a5,
author = {Partyka, Dariusz and Sakan, Ken-ichi},
title = {On a result by {Clunie} and {Sheil-Small}},
journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica},
year = {2012},
volume = {66},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUM_2012_66_2_a5/}
}
Partyka, Dariusz; Sakan, Ken-ichi. On a result by Clunie and Sheil-Small. Annales Universitatis Mariae Curie-Skłodowska. Mathematica, Tome 66 (2012) no. 2. http://geodesic.mathdoc.fr/item/AUM_2012_66_2_a5/
[1] Bshouty, D., Hengartner, W., Univalent harmonic mappings in the plane, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 48 (1994), 12-42.
[2] Clunie, J., Sheil-Small, T., Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 9 (1984), 3-25.
[3] Lewy, H., On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42 (1936), 689-692.
[4] Partyka, D., The generalized Neumann-Poincare operator and its spectrum, Dissertationes Math., vol. 366, Institute of Mathematics, Polish Academy of Sciences, Warszawa, 1997.
[5] Partyka, D., Sakan, K., A simple deformation of quasiconformal harmonic mappings in the unit disk, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 37 (2012), 539-556.