On a result by Clunie and Sheil-Small
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 66 (2012) no. 2.

Voir la notice de l'article provenant de la source Library of Science

In 1984 J. Clunie and T. Sheil-Small proved ([2, Corollary 5.8]) that for any complex-valued and sense-preserving injective harmonic mapping F in the unit disk 𝔻, if F(𝔻) is a convex domain, then the inequality |G(z_2)-G(z_1)| lt; |H(z_2)- H(z_1)| holds for all distinct points z_1, z_2 ∈𝔻. Here H and G are holomorphic mappings in 𝔻 determined by F = H + G, up to a constant function. We extend this inequality by replacing the unit disk by an arbitrary nonempty domain Ω in ℂ and improve it provided F is additionally a quasiconformal mapping in Ω.
Keywords: Harmonic mappings, Lipschitz condition, bi-Lipchitz condition, co-Lipchitz condition, quasiconformal mappings
@article{AUM_2012_66_2_a5,
     author = {Partyka, Dariusz and Sakan, Ken-ichi},
     title = {On a result by {Clunie} and {Sheil-Small}},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {66},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2012_66_2_a5/}
}
TY  - JOUR
AU  - Partyka, Dariusz
AU  - Sakan, Ken-ichi
TI  - On a result by Clunie and Sheil-Small
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2012
VL  - 66
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2012_66_2_a5/
LA  - en
ID  - AUM_2012_66_2_a5
ER  - 
%0 Journal Article
%A Partyka, Dariusz
%A Sakan, Ken-ichi
%T On a result by Clunie and Sheil-Small
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2012
%V 66
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2012_66_2_a5/
%G en
%F AUM_2012_66_2_a5
Partyka, Dariusz; Sakan, Ken-ichi. On a result by Clunie and Sheil-Small. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 66 (2012) no. 2. http://geodesic.mathdoc.fr/item/AUM_2012_66_2_a5/

[1] Bshouty, D., Hengartner, W., Univalent harmonic mappings in the plane, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 48 (1994), 12-42.

[2] Clunie, J., Sheil-Small, T., Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 9 (1984), 3-25.

[3] Lewy, H., On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42 (1936), 689-692.

[4] Partyka, D., The generalized Neumann-Poincare operator and its spectrum, Dissertationes Math., vol. 366, Institute of Mathematics, Polish Academy of Sciences, Warszawa, 1997.

[5] Partyka, D., Sakan, K., A simple deformation of quasiconformal harmonic mappings in the unit disk, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 37 (2012), 539-556.