Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2012_66_1_a6, author = {Gil{\textquoteright}, Michael}, title = {Resolvent and spectrum of a nonselfadjoint differential operator in a {Hilbert} space}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {66}, number = {1}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2012_66_1_a6/} }
TY - JOUR AU - Gil’, Michael TI - Resolvent and spectrum of a nonselfadjoint differential operator in a Hilbert space JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2012 VL - 66 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2012_66_1_a6/ LA - en ID - AUM_2012_66_1_a6 ER -
Gil’, Michael. Resolvent and spectrum of a nonselfadjoint differential operator in a Hilbert space. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 66 (2012) no. 1. http://geodesic.mathdoc.fr/item/AUM_2012_66_1_a6/
[1] Adiguzelov, E., Karayel, S., A selfadjoint expansion of a symmetric differential operator with operator coefficient, Int. J. Contemp. Math. Sci. 2 (2007), no. 21-24, 1053-1067.
[2] Amrein, W., Boutet de Monvel-Berthier, A. and Georgescu, V., Hardy type inequalities for abstract differential operators, Mem. Amer. Math. Soc. 70 (1987), no. 375, 119 pp.
[3] Baksi, O., Sezer, Y. and Karayel, S., The sum of subtraction of the eigenvalues of two selfadjoint differential operators with unbounded operator coefficient, Int. J. Pure Appl. Math. 63 (2010), no. 3, 255-268.
[4] Gul, E., A regularized trace formula for a differential operator of second order with unbounded operator coefficients given in a finite interval, Int. J. Pure Appl. Math. 32 (2006), no. 2, 225-244.
[5] Daleckii, Yu L., Krein, M. G., Stability of Solutions of Differential Equations in Banach Space, Translations of Mathematical Monographs, vol. 43, American Mathematical Society, Providence, R. I., 1974.
[6] Gil’, M. I., Operator Functions and Localization of Spectra, Lecture Notes in Mathematics, vol. 1830, Springer-Verlag, Berlin, 2003.
[7] Gil’, M. I., Localization and Perturbation of Zeros of Entire Functions, Lecture Notes in Pure and Applied Mathematics, 258, CRC Press, Boca Raton, FL, 2010.
[8] Gil’, M. I., Bounds for the spectrum of a matrix differential operator with a damping term, Z. Angew. Math. Phys. 62 (2011), no. 1, 87-97.
[9] Gohberg, I. C., Krein, M. G., Introduction to the Theory of Linear Nonselfadjoint Operators, Translations of Mathematical Monographs, vol. 18, American Mathematical Society, Providence, R.I., 1969.
[10] Gohberg, I. C., Krein, M. G., Theory and Applications of Volterra Operators in Hilbert Space, Translations of Mathematical Monographs, vol. 24, American Mathematical Society, R. I., 1970.
[11] Krein, S. G., Linear Differential Equations in Banach Space, Translations of Mathematical Monographs, vol. 29, American Mathematical Society, Providence, R.I., 1971.
[12] Kunstmann, P. C., Weis, L., Maximal Lp-regularity for parabolic equations, Fourier multiplier and H1-functional calculus, in: Functional Analytic Methods for Evolution Equations, Lecture Notes in Mathematics, vol. 1855, Springer, Berlin, 2004, 65-311.
[13] Rofe-Beketov, F. S., Kholkin, A. M., Spectral Analysis of Differential Operators. Interplay between spectral and oscillatory properties, World Scientific Monograph Series in Mathematics, 7, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.
[14] Yakubov, S., Yakubov, Ya., Differential-Operator Equations. Ordinary and Partial Differential Equations, Chapman and Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 103, Chapman Hall/CRC, Boca Raton, FL, 2000.