Boundedness and compactness of weighted composition operators between weighted Bergman spaces
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 66 (2012) no. 1.

Voir la notice de l'article provenant de la source Library of Science

We study when a weighted composition operator acting between different weighted Bergman spaces is bounded, resp. compact.
Keywords: Weighted Bergman space, composition operator
@article{AUM_2012_66_1_a1,
     author = {Wolf, Elke},
     title = {Boundedness and compactness of weighted composition operators between weighted {Bergman} spaces},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {66},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2012_66_1_a1/}
}
TY  - JOUR
AU  - Wolf, Elke
TI  - Boundedness and compactness of weighted composition operators between weighted Bergman spaces
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2012
VL  - 66
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2012_66_1_a1/
LA  - en
ID  - AUM_2012_66_1_a1
ER  - 
%0 Journal Article
%A Wolf, Elke
%T Boundedness and compactness of weighted composition operators between weighted Bergman spaces
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2012
%V 66
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2012_66_1_a1/
%G en
%F AUM_2012_66_1_a1
Wolf, Elke. Boundedness and compactness of weighted composition operators between weighted Bergman spaces. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 66 (2012) no. 1. http://geodesic.mathdoc.fr/item/AUM_2012_66_1_a1/

[1] Bonet, J., Domański, P. and Lindstrom, M., Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions, Canad. Math. Bull. 42 (1999), no. 2, 139-148.

[2] Bonet, J., Domański, P., Lindstrom, M. and Taskinen, J., Composition operators between weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 64 (1998), no. 1, 101-118.

[3] Bonet, J., Friz, M. and Jorda, E., Composition operators between weighted inductive limits of spaces of holomorphic functions, Publ. Math. Debrecen 67 (2005), no. 3-4, 333-348.

[4] Contreras, M. D., Hernandez-Dıaz, A. G., Weighted composition operators in weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 69 (2000), no. 1, 41-60.

[5] Cowen, C., MacCluer, B., Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995.

[6] Cuckovic, Z., Zhao, R., Weighted composition operators on the Bergman space, J. London Math. Soc. (2) 70 (2004), no. 2, 499-511.

[7] Duren, P., Schuster, A., Bergman Spaces, Mathematical Surveys and Monographs, 100, American Mathematical Society, Providence, RI, 2004.

[8] Hastings, W., A Carleson measure theorem for Bergman spaces, Proc. Amer. Math. Soc. 52 (1975), 237-241.

[9] Hedenmalm, H., Korenblum, B. and Zhu, K., Theory of Bergman spaces, Graduate Texts in Mathematics, 199, Springer–Verlag, New York, 2000.

[10] Kriete, T., MacCluer, B., Composition operators on large weighted Bergman spaces, Indiana Univ. Math. J. 41 (1992), no. 3, 755-788.

[11] Moorhouse, J., Compact differences of composition operators, J. Funct. Anal. 219 (2005), no. 1, 70-92.

[12] MacCluer, B., Ohno, S. and Zhao, R., Topological structure of the space of composition operators on \(H^{\infty}\), Integral Equations Operator Theory 40 (2001), no. 4, 481-494.

[13] Nieminen, P., Compact differences of composition operators on Bloch and Lipschitz spaces, Comput. Methods Funct. Theory 7 (2007), no. 2, 325-344.

[14] Palmberg, N., Weighted composition operators with closed range, Bull. Austral. Math. Soc. 75 (2007), no. 3, 331-354.

[15] Shapiro, J. H., Composition Operators and Classical Function Theory, Universitext: Tracts in Mathematics. Springer-Verlag, New York, 1993.

[16] Wolf, E., Weighted composition operators between weighted Bergman spaces, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Math. RACSAM 103 (2009), no. 1, 11-15.