Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2012_66_1_a1, author = {Wolf, Elke}, title = {Boundedness and compactness of weighted composition operators between weighted {Bergman} spaces}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {66}, number = {1}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2012_66_1_a1/} }
TY - JOUR AU - Wolf, Elke TI - Boundedness and compactness of weighted composition operators between weighted Bergman spaces JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2012 VL - 66 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2012_66_1_a1/ LA - en ID - AUM_2012_66_1_a1 ER -
%0 Journal Article %A Wolf, Elke %T Boundedness and compactness of weighted composition operators between weighted Bergman spaces %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2012 %V 66 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUM_2012_66_1_a1/ %G en %F AUM_2012_66_1_a1
Wolf, Elke. Boundedness and compactness of weighted composition operators between weighted Bergman spaces. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 66 (2012) no. 1. http://geodesic.mathdoc.fr/item/AUM_2012_66_1_a1/
[1] Bonet, J., Domański, P. and Lindstrom, M., Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions, Canad. Math. Bull. 42 (1999), no. 2, 139-148.
[2] Bonet, J., Domański, P., Lindstrom, M. and Taskinen, J., Composition operators between weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 64 (1998), no. 1, 101-118.
[3] Bonet, J., Friz, M. and Jorda, E., Composition operators between weighted inductive limits of spaces of holomorphic functions, Publ. Math. Debrecen 67 (2005), no. 3-4, 333-348.
[4] Contreras, M. D., Hernandez-Dıaz, A. G., Weighted composition operators in weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 69 (2000), no. 1, 41-60.
[5] Cowen, C., MacCluer, B., Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995.
[6] Cuckovic, Z., Zhao, R., Weighted composition operators on the Bergman space, J. London Math. Soc. (2) 70 (2004), no. 2, 499-511.
[7] Duren, P., Schuster, A., Bergman Spaces, Mathematical Surveys and Monographs, 100, American Mathematical Society, Providence, RI, 2004.
[8] Hastings, W., A Carleson measure theorem for Bergman spaces, Proc. Amer. Math. Soc. 52 (1975), 237-241.
[9] Hedenmalm, H., Korenblum, B. and Zhu, K., Theory of Bergman spaces, Graduate Texts in Mathematics, 199, Springer–Verlag, New York, 2000.
[10] Kriete, T., MacCluer, B., Composition operators on large weighted Bergman spaces, Indiana Univ. Math. J. 41 (1992), no. 3, 755-788.
[11] Moorhouse, J., Compact differences of composition operators, J. Funct. Anal. 219 (2005), no. 1, 70-92.
[12] MacCluer, B., Ohno, S. and Zhao, R., Topological structure of the space of composition operators on \(H^{\infty}\), Integral Equations Operator Theory 40 (2001), no. 4, 481-494.
[13] Nieminen, P., Compact differences of composition operators on Bloch and Lipschitz spaces, Comput. Methods Funct. Theory 7 (2007), no. 2, 325-344.
[14] Palmberg, N., Weighted composition operators with closed range, Bull. Austral. Math. Soc. 75 (2007), no. 3, 331-354.
[15] Shapiro, J. H., Composition Operators and Classical Function Theory, Universitext: Tracts in Mathematics. Springer-Verlag, New York, 1993.
[16] Wolf, E., Weighted composition operators between weighted Bergman spaces, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Math. RACSAM 103 (2009), no. 1, 11-15.