Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2011_65_2_a8, author = {Partyka, Dariusz}, title = {On a modification of the {Poisson} integral operator}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {65}, number = {2}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a8/} }
Partyka, Dariusz. On a modification of the Poisson integral operator. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 65 (2011) no. 2. http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a8/
[1] Beurling, A., Ahlfors, L. V., The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125-142.
[2] Duren, P., Theory of \(H^p\)-Spaces, Dover Publications, Inc., Mineola, New York, 2000.
[3] Gaier, D., Konstruktive Methoden der konformen Abbildung, Springer-Verlag, Berlin, 1964.
[4] Garnett, J. B., Bounded Analytic Functions, Academic Press, New York, 1981.
[5] Kellogg, O. D., Foundations of Potential Theory, Dover Publications, Inc., New York, 1953.
[6] Krushkal, S. L., On the Grunsky coefficient conditions, Siberian Math. J. 28 (1987), 104-110.
[7] Krushkal, S. L., Grunsky coefficient inequalities, Carath´eodory metric and extremal quasiconformal mappings, Comment. Math. Helv. 64 (1989), 650-660.
[8] Krushkal, S. L., Univalent holomorphic functions with quasiconformal extensions (variational approach), Handbook of Complex Analysis: Geometric Function Theory. Vol. 2 (ed. by R. K¨uhnau), Elsevier B.V., 2005, pp. 165-241.
[9] Krushkal, S. L., Quasiconformal Extensions and Reflections, Handbook of Complex Analysis: Geometric Function Theory. Vol. 2 (ed. by R. K¨uhnau), Elsevier B.V.,
[10] 2005, pp. 507-553.
[11] Krzyż, J. G., Conjugate holomorphic eigenfunctions and extremal quasiconformal reflection, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 305-311.
[12] Krzyż, J. G., Generalized Fredholm eigenvalues of a Jordan curve, Ann. Polon. Math. 46 (1985), 157-163.
[13] Krzyż, J. G., Quasicircles and harmonic measure, Ann. Acad. Sci. Fenn. Ser. A I Math. 12 (1987), 19-24.
[14] Krzyż, J. G., Quasisymmetric functions and quasihomographies, Ann. Univ. Mariae Curie-Skłodowska Sect. A 47 (1993), 90-95.
[15] Krzyż, J. G., Partyka, D., Generalized Neumann-Poincar´e operator, chord-arc curves and Fredholm eigenvalues, Complex Variables Theory Appl. 21 (1993), 253-263.
[16] Kuhnau, R., Zu den Grunskyschen Koeffizientenbedingungen, Ann. Acad. Sci. Fenn. Ser. A I Math. 6 (1981), 125-130.
[17] Kuhnau, R., Quasikonforme Fortsetzbarkeit, Fredholmsche Eigenwerten und Grunskysche Koeffizientenbedingungen, Ann. Acad. Sci. Fenn. Ser. A I Math. 7 (1982), 383-391.
[18] Kuhnau, R., Wann sind die Grunskyschen Koeffizientenbedingungen hinreichend fur Q-quasikonforme Fortsetzbarkeit?, Comment. Math. Helv. 61 (1986), 290-307.
[19] Kuhnau, R., Koeffizientenbedingungen vom Grunskyschen Typ und Fredholmsche Eigenwerte, Ann. Univ. Mariae Curie-Skłodowska Sect. A 58 (2004), 79-87.
[20] Kuhnau, R., A new matrix characterization of Fredholm eigenvalues of quasicircles, J. Anal. Math. 99 (2006), 295-307.
[21] Kuhnau, R., New characterizations of Fredholm eigenvalues of quasicircles, Rev. Roumaine Math. Pures Appl. 51 (2006), no. 5-6, 683-688.
[22] Partyka, D., Spectral values and eigenvalues of a quasicircle, Ann. Univ. Mariae Curie-Skłodowska Sec. A 46 (1993), 81-98.
[23] Partyka, D., The smallest positive eigenvalue of a quasisymmetric automorphism of the unit circle, Topics in Complex Analysis (Warsaw, 1992), Banach Center Publ.,
[24] 31, Polish Acad. Sci., Warsaw, 1995, pp. 303-310.
[25] Partyka, D., Some extremal problems concerning the operator \(B_{\gamma}\) , Ann. Univ. Mariae Curie-Skłodowska Sect. A 50 (1996), 163-184.
[26] Partyka, D., The generalized Neumann-Poincare operator and its spectrum, Dissertationes Math. (Rozprawy Mat.) 366 (1997), 125 pp.
[27] Partyka, D., Eigenvalues of quasisymmetric automorphisms determined by VMO functions, Ann. Univ. Mariae Curie-Skłodowska Sec. A 52 (1998), 121-135.
[28] Partyka, D., The Grunsky type inequalities for quasisymmetric automorphisms of the unit circle, Bull. Soc. Sci. Lett. Łódź Ser. Rech. Deform. 31 (2000), 135-142.
[29] Partyka, D., Sakan, K., A conformally invariant dilatation of quasisymmetry, Ann. Univ. Mariae Curie-Skłodowska Sec. A 53 (1999), 167-181.
[30] Pommerenke, Ch., Univalent Functions, Vandenhoeck Ruprecht, Gottingen, 1975.
[31] Schiffer, M., Fredholm eigenvalues and Grunsky matrices, Ann. Polon. Math. 39 (1981), 149-164.
[32] Schober, G., Numerische, insbesondere approximationstheoretische behandlung von
[33] funktionalgleichungen, Estimates for Fredholm Eigenvalues Based on Quasiconformal Mapping, Lecture Notes in Math. 333, Springer-Verlag, Berlin, 1973, pp. 211-217.
[34] Shen, Y., Generalized Fourier coefficients of a quasi-symmetric homeomorphism and Fredholm eigenvalue, J. Anal. Math. 112 (2010), no. 1, 33-48.
[35] Warschawski, S. E., On differentiability at the boundary in conformal mapping, Proc. Amer. Math. Soc. 12 (1961), 614-620.
[36] Zając, J., Quasihomographies in the theory of Teichmuller spaces, Dissertationes Math. (Rozprawy Mat.) 357 (1996), 102 pp.