On a modification of the Poisson integral operator
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 65 (2011) no. 2.

Voir la notice de l'article provenant de la source Library of Science

Given a quasisymmetric automorphism γ of the unit circle 𝕋 we define and study a modification P_γ of the classical Poisson integral operator in the case of the unit disk 𝔻. The modification is done by means of the generalized Fourier coefficients of γ. For a Lebesgue’s integrable complexvalued function f on 𝕋, P_γ[f] is a complex-valued harmonic function in 𝔻 and it coincides with the classical Poisson integral of f provided γ is the identity mapping on 𝕋. Our considerations are motivated by the problem of spectral values and eigenvalues of a Jordan curve. As an application we establish a relationship between the operator P_γ, the maximal dilatation of a regular quasiconformal Teichmuller extension of γ to 𝔻 and the smallest positive eigenvalue of γ.
Keywords: Dirichlet integral, eigenvalue of a Jordan curve, eigenvalue of a quasisymmetric automorphism, extremal quasiconformal mapping, Fourier coefficient, harmonic conjugation operator, harmonic function, Neumann-Poincare kernel, Poisson integral
@article{AUM_2011_65_2_a8,
     author = {Partyka, Dariusz},
     title = {On a modification of the {Poisson} integral operator},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {65},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a8/}
}
TY  - JOUR
AU  - Partyka, Dariusz
TI  - On a modification of the Poisson integral operator
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2011
VL  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a8/
LA  - en
ID  - AUM_2011_65_2_a8
ER  - 
%0 Journal Article
%A Partyka, Dariusz
%T On a modification of the Poisson integral operator
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2011
%V 65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a8/
%G en
%F AUM_2011_65_2_a8
Partyka, Dariusz. On a modification of the Poisson integral operator. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 65 (2011) no. 2. http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a8/

[1] Beurling, A., Ahlfors, L. V., The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125-142.

[2] Duren, P., Theory of \(H^p\)-Spaces, Dover Publications, Inc., Mineola, New York, 2000.

[3] Gaier, D., Konstruktive Methoden der konformen Abbildung, Springer-Verlag, Berlin, 1964.

[4] Garnett, J. B., Bounded Analytic Functions, Academic Press, New York, 1981.

[5] Kellogg, O. D., Foundations of Potential Theory, Dover Publications, Inc., New York, 1953.

[6] Krushkal, S. L., On the Grunsky coefficient conditions, Siberian Math. J. 28 (1987), 104-110.

[7] Krushkal, S. L., Grunsky coefficient inequalities, Carath´eodory metric and extremal quasiconformal mappings, Comment. Math. Helv. 64 (1989), 650-660.

[8] Krushkal, S. L., Univalent holomorphic functions with quasiconformal extensions (variational approach), Handbook of Complex Analysis: Geometric Function Theory. Vol. 2 (ed. by R. K¨uhnau), Elsevier B.V., 2005, pp. 165-241.

[9] Krushkal, S. L., Quasiconformal Extensions and Reflections, Handbook of Complex Analysis: Geometric Function Theory. Vol. 2 (ed. by R. K¨uhnau), Elsevier B.V.,

[10] 2005, pp. 507-553.

[11] Krzyż, J. G., Conjugate holomorphic eigenfunctions and extremal quasiconformal reflection, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 305-311.

[12] Krzyż, J. G., Generalized Fredholm eigenvalues of a Jordan curve, Ann. Polon. Math. 46 (1985), 157-163.

[13] Krzyż, J. G., Quasicircles and harmonic measure, Ann. Acad. Sci. Fenn. Ser. A I Math. 12 (1987), 19-24.

[14] Krzyż, J. G., Quasisymmetric functions and quasihomographies, Ann. Univ. Mariae Curie-Skłodowska Sect. A 47 (1993), 90-95.

[15] Krzyż, J. G., Partyka, D., Generalized Neumann-Poincar´e operator, chord-arc curves and Fredholm eigenvalues, Complex Variables Theory Appl. 21 (1993), 253-263.

[16] Kuhnau, R., Zu den Grunskyschen Koeffizientenbedingungen, Ann. Acad. Sci. Fenn. Ser. A I Math. 6 (1981), 125-130.

[17] Kuhnau, R., Quasikonforme Fortsetzbarkeit, Fredholmsche Eigenwerten und Grunskysche Koeffizientenbedingungen, Ann. Acad. Sci. Fenn. Ser. A I Math. 7 (1982), 383-391.

[18] Kuhnau, R., Wann sind die Grunskyschen Koeffizientenbedingungen hinreichend fur Q-quasikonforme Fortsetzbarkeit?, Comment. Math. Helv. 61 (1986), 290-307.

[19] Kuhnau, R., Koeffizientenbedingungen vom Grunskyschen Typ und Fredholmsche Eigenwerte, Ann. Univ. Mariae Curie-Skłodowska Sect. A 58 (2004), 79-87.

[20] Kuhnau, R., A new matrix characterization of Fredholm eigenvalues of quasicircles, J. Anal. Math. 99 (2006), 295-307.

[21] Kuhnau, R., New characterizations of Fredholm eigenvalues of quasicircles, Rev. Roumaine Math. Pures Appl. 51 (2006), no. 5-6, 683-688.

[22] Partyka, D., Spectral values and eigenvalues of a quasicircle, Ann. Univ. Mariae Curie-Skłodowska Sec. A 46 (1993), 81-98.

[23] Partyka, D., The smallest positive eigenvalue of a quasisymmetric automorphism of the unit circle, Topics in Complex Analysis (Warsaw, 1992), Banach Center Publ.,

[24] 31, Polish Acad. Sci., Warsaw, 1995, pp. 303-310.

[25] Partyka, D., Some extremal problems concerning the operator \(B_{\gamma}\) , Ann. Univ. Mariae Curie-Skłodowska Sect. A 50 (1996), 163-184.

[26] Partyka, D., The generalized Neumann-Poincare operator and its spectrum, Dissertationes Math. (Rozprawy Mat.) 366 (1997), 125 pp.

[27] Partyka, D., Eigenvalues of quasisymmetric automorphisms determined by VMO functions, Ann. Univ. Mariae Curie-Skłodowska Sec. A 52 (1998), 121-135.

[28] Partyka, D., The Grunsky type inequalities for quasisymmetric automorphisms of the unit circle, Bull. Soc. Sci. Lett. Łódź Ser. Rech. Deform. 31 (2000), 135-142.

[29] Partyka, D., Sakan, K., A conformally invariant dilatation of quasisymmetry, Ann. Univ. Mariae Curie-Skłodowska Sec. A 53 (1999), 167-181.

[30] Pommerenke, Ch., Univalent Functions, Vandenhoeck Ruprecht, Gottingen, 1975.

[31] Schiffer, M., Fredholm eigenvalues and Grunsky matrices, Ann. Polon. Math. 39 (1981), 149-164.

[32] Schober, G., Numerische, insbesondere approximationstheoretische behandlung von

[33] funktionalgleichungen, Estimates for Fredholm Eigenvalues Based on Quasiconformal Mapping, Lecture Notes in Math. 333, Springer-Verlag, Berlin, 1973, pp. 211-217.

[34] Shen, Y., Generalized Fourier coefficients of a quasi-symmetric homeomorphism and Fredholm eigenvalue, J. Anal. Math. 112 (2010), no. 1, 33-48.

[35] Warschawski, S. E., On differentiability at the boundary in conformal mapping, Proc. Amer. Math. Soc. 12 (1961), 614-620.

[36] Zając, J., Quasihomographies in the theory of Teichmuller spaces, Dissertationes Math. (Rozprawy Mat.) 357 (1996), 102 pp.