The Schwarz-Pick theorem and its applications
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 65 (2011) no. 2.

Voir la notice de l'article provenant de la source Library of Science

Various derivative estimates for functions of exponential type in a half-plane are proved in this paper. The reader will also find a related result about functions analytic in a quadrant. In addition, the paper contains a result about functions analytic in a strip. Our main tool in this study is the Schwarz-Pick theorem from the geometric theory of functions. We also use the Phragmen-Lindelof principle, which is of course standard in such situations.
Keywords: Bernstein’s inequality, functions of exponential type in a half-plane, rational functions, Schwarz-Pick theorem
@article{AUM_2011_65_2_a16,
     author = {Qazi, M. A. and Rahman, Q. I.},
     title = {The {Schwarz-Pick} theorem and its applications},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {65},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a16/}
}
TY  - JOUR
AU  - Qazi, M. A.
AU  - Rahman, Q. I.
TI  - The Schwarz-Pick theorem and its applications
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2011
VL  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a16/
LA  - en
ID  - AUM_2011_65_2_a16
ER  - 
%0 Journal Article
%A Qazi, M. A.
%A Rahman, Q. I.
%T The Schwarz-Pick theorem and its applications
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2011
%V 65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a16/
%G en
%F AUM_2011_65_2_a16
Qazi, M. A.; Rahman, Q. I. The Schwarz-Pick theorem and its applications. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 65 (2011) no. 2. http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a16/

[1] Ahlfors, L. V., Conformal Invariants: Topics in Geometric Function Theory, McGraw-Hill Book Company, New York-Dusseldorf-Johannesburg, 1973.

[2] Bernstein, S. N., Sur la limitation des derivees des polynomes, C. R. Math. Acad. Sci. Paris 190 (1930), 338-340.

[3] Boas, Jr., R. P., Entire Functions, Academic Press, New York, 1954.

[4] Caratheodory, C., Conformal Representation, Cambridge Tracts in Mathematics and Mathematical Physics, No. 28, Cambridge University Press, Cambridge, 1963.

[5] Krzyż, J. G., Problems in Complex Variable Theory, American Elsevier Publishing Company, Inc., New York, 1971.

[6] Qazi, M. A., Rahman, Q. I., Some estimates for the derivatives of rational functions, Comput. Methods Funct. Theory 10 (2010), 61-79.

[7] Qazi, M. A., Rahman, Q. I., Functions of exponential type in a half-plane, Complex Var. Elliptic Equ. (in print).

[8] Rahman, Q. I., Inequalities concerning polynomials and trigonometric polynomials, J. Math. Anal. Appl. 6 (1963), 303-324.

[9] Rahman, Q. I., Schmeisser, G., Analytic Theory of Polynomials, Clarendon Press, Oxford, 2002.