Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2011_65_2_a16, author = {Qazi, M. A. and Rahman, Q. I.}, title = {The {Schwarz-Pick} theorem and its applications}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {65}, number = {2}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a16/} }
Qazi, M. A.; Rahman, Q. I. The Schwarz-Pick theorem and its applications. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 65 (2011) no. 2. http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a16/
[1] Ahlfors, L. V., Conformal Invariants: Topics in Geometric Function Theory, McGraw-Hill Book Company, New York-Dusseldorf-Johannesburg, 1973.
[2] Bernstein, S. N., Sur la limitation des derivees des polynomes, C. R. Math. Acad. Sci. Paris 190 (1930), 338-340.
[3] Boas, Jr., R. P., Entire Functions, Academic Press, New York, 1954.
[4] Caratheodory, C., Conformal Representation, Cambridge Tracts in Mathematics and Mathematical Physics, No. 28, Cambridge University Press, Cambridge, 1963.
[5] Krzyż, J. G., Problems in Complex Variable Theory, American Elsevier Publishing Company, Inc., New York, 1971.
[6] Qazi, M. A., Rahman, Q. I., Some estimates for the derivatives of rational functions, Comput. Methods Funct. Theory 10 (2010), 61-79.
[7] Qazi, M. A., Rahman, Q. I., Functions of exponential type in a half-plane, Complex Var. Elliptic Equ. (in print).
[8] Rahman, Q. I., Inequalities concerning polynomials and trigonometric polynomials, J. Math. Anal. Appl. 6 (1963), 303-324.
[9] Rahman, Q. I., Schmeisser, G., Analytic Theory of Polynomials, Clarendon Press, Oxford, 2002.