On a theorem of Lindelof
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 65 (2011) no. 2.

Voir la notice de l'article provenant de la source Library of Science

We give a quasiconformal version of the proof for the classical Lindelof theorem: Let f map the unit disk 𝔻 conformally onto the inner domain of a Jordan curve 𝒞: Then 𝒞 is smooth if and only if arg f'(z) has a continuous extension to 𝔻. Our proof does not use the Poisson integral representation of harmonic functions in the unit disk.
Keywords: Lindelof theorem, infinitesimal geometry, continuous extension to the boundary, differentiability at the boundary, conformal and quaisconformal mappings
@article{AUM_2011_65_2_a10,
     author = {Gutlyanskii, Vladimir Ya. and Martio, Olli and Ryazanov, Vladimir},
     title = {On a theorem of {Lindelof}},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {65},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a10/}
}
TY  - JOUR
AU  - Gutlyanskii, Vladimir Ya.
AU  - Martio, Olli
AU  - Ryazanov, Vladimir
TI  - On a theorem of Lindelof
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2011
VL  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a10/
LA  - en
ID  - AUM_2011_65_2_a10
ER  - 
%0 Journal Article
%A Gutlyanskii, Vladimir Ya.
%A Martio, Olli
%A Ryazanov, Vladimir
%T On a theorem of Lindelof
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2011
%V 65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a10/
%G en
%F AUM_2011_65_2_a10
Gutlyanskii, Vladimir Ya.; Martio, Olli; Ryazanov, Vladimir. On a theorem of Lindelof. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 65 (2011) no. 2. http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a10/

[1] Ahlfors, L. V., Quasiconformal reflections, Acta Math. 109 (1963), 291-301.

[2] Ahlfors, L. V., Lectures on Quasiconformal Mappings, D. Van Nostrand Co., Inc., Toronto, Ont., 1966; Reprinted by Wadsworth Brooks, Monterey, CA, 1987.

[3] Gutlyanskii, V. Ya., Ryazanov, V. I., On asymptotically conformal curves, Complex Variables Theory Appl. 25 (1994), 357-366.

[4] Gutlyanskii, V. Ya., Ryazanov, V. I., On the theory of the local behavior of quasiconformal mappings, Izv. Math. 59 (1995), no. 3, 471-498.

[5] Gutlyanskii, V. Ya., Martio, O., Ryazanov, V. I. and Vuorinen, M., Infinitesimal geometry of quasiregular mappings, Ann. Acad. Sci. Fenn. Math. 25 (2000), no. 1,

[6] 101-130.

[7] Lehto, O., Virtanen, K. I., Quasiconformal Mappings in the Plane, 2nd Edition, Springer-Verlag, Berlin-Heidelberg-New York, 1973.

[8] Lindelof, E., Sur la representation conforme d’une aire simplement connexe sur l’aire d’un cercle, Quatrieme Congres des Mathematiciens Scandinaves, Stockholm, 1916, pp. 59-90.

[9] Pommerenke, Ch., Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin-Heidelberg-New York, 1992.

[10] Warschawski, S. E., On differentiability at the boundary in conformal mapping, Proc. Amer. Math. Soc. 12 (1961), 614-620.