About a Pólya-Schiffer inequality
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 65 (2011) no. 2.

Voir la notice de l'article provenant de la source Library of Science

For simply connected planar domains with the maximal conformal radius 1 it was proven in 1954 by G. Pólya and M. Schiffer that for the eigenvalues λ of the fixed membrane for any n the following inequality holds ∑_k=1^n1/λ_k≥∑_k=1^n1/λ_k^(σ), where λ_k^(σ) are the eigenvalues of the unit disk. The aim of the paper is to give a sharper version of this inequality and for the sum of all reciprocals to derive formulas which allow in some cases to calculate exactly this sum.
Keywords: Membrane eigenvalues, sums of reciprocal eigenvalues
@article{AUM_2011_65_2_a1,
     author = {Dittmar, Bodo and Hantke, Maren},
     title = {About a {P\'olya-Schiffer} inequality},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {65},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a1/}
}
TY  - JOUR
AU  - Dittmar, Bodo
AU  - Hantke, Maren
TI  - About a Pólya-Schiffer inequality
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2011
VL  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a1/
LA  - en
ID  - AUM_2011_65_2_a1
ER  - 
%0 Journal Article
%A Dittmar, Bodo
%A Hantke, Maren
%T About a Pólya-Schiffer inequality
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2011
%V 65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a1/
%G en
%F AUM_2011_65_2_a1
Dittmar, Bodo; Hantke, Maren. About a Pólya-Schiffer inequality. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 65 (2011) no. 2. http://geodesic.mathdoc.fr/item/AUM_2011_65_2_a1/

[1] Bandle, C., Isoperimetric Inequalities and Applications, Pitman Publ., London, 1980.

[2] Dittmar, B., Sums of reciprocal eigenvalues of the Laplacian, Math. Nachr. 237 (2002), 45-61.

[3] Dittmar, B., Sums of free membrane eigenvalues, J. Anal. Math. 95 (2005), 323-332.

[4] Dittmar, B., Eigenvalue problems and conformal mapping, R. K¨uhnau (ed.), Handbook of Complex Analysis: Geometric Function Theory. Vol. 2, Elsevier, Amsterdam,

[5] 2005, pp. 669-686.

[6] Dittmar, B., Free membrane eigenvalues, Z. Angew. Math. Phys. 60 (2009), 565-568.

[7] Hantke, M., Summen reziproker Eigenwerte, Dissertation Martin-Luther-Universitat, Halle-Wittenberg, 2006.

[8] Henrot, A., Extremum problems for eigenvalues of elliptic operators, Birkauser, Basel-Boston-Berlin, 2006.

[9] Luttinger, J. M., Generalized isoperimetric inequalities, J. Mathematical Phys. 14 (1973), 586-593, ibid. 14 (1973), 1444-1447, ibid. 14 (1973), 1448-1450.

[10] Pólya, G., Schiffer, M., Convexity of functionals by transplantation, J. Analyse Math. 3 (1954), 245-345.

[11] Pólya, G., Szego, G., Isoperimetric Inequalities in Mathematical Physics, Princeton University Press, Princeton, N. J., 1951.