Inequalities concerning polar derivative of polynomials
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 65 (2011) no. 1.

Voir la notice de l'article provenant de la source Library of Science

In this paper we obtain certain results for the polar derivative of a polynomial p(z) = c_nz^n +∑_j=μ^n c_n-jz^n-j, 1≤μ≤ n, having all its zeros on |z| = k, k≤ 1, which generalizes the results due to Dewan and Mir, Dewan and Hans. We also obtain certain new inequalities concerning the maximum modulus of a polynomial with restricted zeros. [Editor's note: There are flaws in the paper, see M. A. Qazi, Remarks on some recent results about polynomials with restricted zeros, Ann. Univ. Mariae Curie-Skłodowska Sect. A 67 (2), (2013), 59-64 ]
Keywords: Polynomials, maximum modulus, inequalities in the complex domain, polar derivative
@article{AUM_2011_65_1_a3,
     author = {Ahuja, Arty and Dewan, K. K. and Hans, Sunil},
     title = {Inequalities concerning polar derivative of polynomials},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2011_65_1_a3/}
}
TY  - JOUR
AU  - Ahuja, Arty
AU  - Dewan, K. K.
AU  - Hans, Sunil
TI  - Inequalities concerning polar derivative of polynomials
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2011
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2011_65_1_a3/
LA  - en
ID  - AUM_2011_65_1_a3
ER  - 
%0 Journal Article
%A Ahuja, Arty
%A Dewan, K. K.
%A Hans, Sunil
%T Inequalities concerning polar derivative of polynomials
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2011
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2011_65_1_a3/
%G en
%F AUM_2011_65_1_a3
Ahuja, Arty; Dewan, K. K.; Hans, Sunil. Inequalities concerning polar derivative of polynomials. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 65 (2011) no. 1. http://geodesic.mathdoc.fr/item/AUM_2011_65_1_a3/

[1] Bernstein, S., Lecons sur les proprietes extremales et la meilleure approximation desfonctions analytiques d’une variable reele, Gauthier Villars, Paris, 1926 (French).

[2] Chan, T. N., Malik, M. A., On Erdos-Lax theorem, Proc. Indian Acad. Sci. 92 (3) (1983), 191-193.

[3] Dewan, K. K., Hans, S., On maximum modulus for the derivative of a polynomial, Ann. Univ. Mariae Curie-Skłodowska Sect. A 63 (2009), 55-62.

[4] Dewan, K. K., Mir, A., Note on a theorem of S. Bernstein, Southeast Asian Bulletin of Math. 31 (2007), 691-695.

[5] Govil, N. K., On the theorem of S. Bernstein, J. Math. Phys. Sci. 14 (1980), 183-187.

[6] Govil, N. K., Rahman, Q. I., Functions of exponential type not vanishing in a half plane and related polynomials, Trans. Amer. Math. Soc. 137 (1969), 501-517.

[7] Jain, V. K., On polynomials having zeros in closed exterior or interior of a circle, Indian J. Pure Appl. Math. 30 (1999), 153-159.

[8] Malik, M. A., On the derivative of a polynomial, J. London Math. Soc. 1 (1969), 57-60.

[9] Mir, A., On extremal properties and location of zeros of polynomials, Ph.D. Thesis submitted to Jamia Millia Islamia, New Delhi, 2002.

[10] Qazi, M. A., On the maximum modulus of polynomials, Proc. Amer. Math. Soc. 115 (1992), 337-343.