Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2011_65_1_a3, author = {Ahuja, Arty and Dewan, K. K. and Hans, Sunil}, title = {Inequalities concerning polar derivative of polynomials}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {65}, number = {1}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2011_65_1_a3/} }
TY - JOUR AU - Ahuja, Arty AU - Dewan, K. K. AU - Hans, Sunil TI - Inequalities concerning polar derivative of polynomials JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2011 VL - 65 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2011_65_1_a3/ LA - en ID - AUM_2011_65_1_a3 ER -
Ahuja, Arty; Dewan, K. K.; Hans, Sunil. Inequalities concerning polar derivative of polynomials. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 65 (2011) no. 1. http://geodesic.mathdoc.fr/item/AUM_2011_65_1_a3/
[1] Bernstein, S., Lecons sur les proprietes extremales et la meilleure approximation desfonctions analytiques d’une variable reele, Gauthier Villars, Paris, 1926 (French).
[2] Chan, T. N., Malik, M. A., On Erdos-Lax theorem, Proc. Indian Acad. Sci. 92 (3) (1983), 191-193.
[3] Dewan, K. K., Hans, S., On maximum modulus for the derivative of a polynomial, Ann. Univ. Mariae Curie-Skłodowska Sect. A 63 (2009), 55-62.
[4] Dewan, K. K., Mir, A., Note on a theorem of S. Bernstein, Southeast Asian Bulletin of Math. 31 (2007), 691-695.
[5] Govil, N. K., On the theorem of S. Bernstein, J. Math. Phys. Sci. 14 (1980), 183-187.
[6] Govil, N. K., Rahman, Q. I., Functions of exponential type not vanishing in a half plane and related polynomials, Trans. Amer. Math. Soc. 137 (1969), 501-517.
[7] Jain, V. K., On polynomials having zeros in closed exterior or interior of a circle, Indian J. Pure Appl. Math. 30 (1999), 153-159.
[8] Malik, M. A., On the derivative of a polynomial, J. London Math. Soc. 1 (1969), 57-60.
[9] Mir, A., On extremal properties and location of zeros of polynomials, Ph.D. Thesis submitted to Jamia Millia Islamia, New Delhi, 2002.
[10] Qazi, M. A., On the maximum modulus of polynomials, Proc. Amer. Math. Soc. 115 (1992), 337-343.