Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2011_65_1_a2, author = {Fazekas, Istvan and Chuprunov, Alexey and Turi, Jozsef}, title = {Inequalities and limit theorems for random allocations}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {65}, number = {1}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2011_65_1_a2/} }
TY - JOUR AU - Fazekas, Istvan AU - Chuprunov, Alexey AU - Turi, Jozsef TI - Inequalities and limit theorems for random allocations JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2011 VL - 65 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2011_65_1_a2/ LA - en ID - AUM_2011_65_1_a2 ER -
%0 Journal Article %A Fazekas, Istvan %A Chuprunov, Alexey %A Turi, Jozsef %T Inequalities and limit theorems for random allocations %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2011 %V 65 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUM_2011_65_1_a2/ %G en %F AUM_2011_65_1_a2
Fazekas, Istvan; Chuprunov, Alexey; Turi, Jozsef. Inequalities and limit theorems for random allocations. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 65 (2011) no. 1. http://geodesic.mathdoc.fr/item/AUM_2011_65_1_a2/
[1] Becker-Kern, P., An almost sure limit theorem for mixtures of domains in random allocation, Studia Sci. Math. Hungar. 44, no. 3 (2007), 331-354.
[2] Bekessy, A., On classical occupancy problems. I, Magy. Tud. Akad. Mat. Kutató Int. Kozl. 8 (1-2) (1963), 59-71.
[3] Berkes, I., Results and problems related to the pointwise central limit theorem, Szyszkowicz, B., (Ed.), Asymptotic Results in Probability and Statistics, Elsevier, Amsterdam, 1998, 59-96.
[4] Berkes, I., Csaki, E., A universal result in almost sure central limit theory, Stoch. Proc. Appl. 94(1) (2001), 105-134.
[5] Chuprunov, A., Fazekas, I., Inequalities and strong laws of large numbers for random allocations, Acta Math. Hungar. 109, no. 1-2 (2005), 163-182.
[6] Fazekas, I., Chuprunov, A., Almost sure limit theorems for random allocations, Studia Sci. Math. Hungar. 42, no. 2 (2005), 173-194.
[7] Fazekas, I., Chuprunov, A., An almost sure functional limit theorem for the domain of geometric partial attraction of semistable laws, J. Theoret. Probab. 20, no. 2 (2007), 339-353.
[8] Fazekas, I., Rychlik, Z., Almost sure functional limit theorems, Ann. Univ. Mariae Curie-Skłodowska Sect. A 56(1) (2002), 1-18.
[9] Fazekas, I., Rychlik, Z., Almost sure central limit theorems for random fields, Math. Nachr. 259 (2003), 12-18.
[10] Hormann, S., An extension of almost sure central limit theory, Statist. Probab. Lett. 76, no. 2 (2006), 191-202.
[11] Kolchin, A. V., Limit theorems for a generalized allocation scheme, Diskret. Mat. 15, no. 4 (2003), 148-157 (Russian); English translation in Discrete Math. Appl. 13, no. 6 (2003), 627-636.
[12] Kolchin, V. F., Sevast’yanov, B. A. and Chistyakov, V. P., Random Allocations, V. H. Winston Sons, Washington D. C., 1978.
[13] Matuła, P., On almost sure limit theorems for positively dependent random variables, Statist. Probab. Lett. 74, no. 1 (2005), 59-66.
[14] Renyi, A., Three new proofs and generalization of a theorem of Irving Weiss, Magy. Tud. Akad. Mat. Kutató Int. K¨ozl. 7(1-2) (1962), 203-214.
[15] Orzóg, M., Rychlik, Z., On the random functional central limit theorems with almost sure convergence, Probab. Math. Statist. 27, no. 1 (2007), 125-138.
[16] Weiss, I., Limiting distributions in some occupancy problems, Ann. Math. Statist. 29(3) (1958), 878-884.