Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2011_65_1_a0, author = {El-Nabulsi, Ahmad Rami}, title = {Extended fractional calculus of variations, complexified geodesics and {Wong{\textquoteright}s} fractional equations on complex plane and on {Lie} algebroids}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {65}, number = {1}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2011_65_1_a0/} }
TY - JOUR AU - El-Nabulsi, Ahmad Rami TI - Extended fractional calculus of variations, complexified geodesics and Wong’s fractional equations on complex plane and on Lie algebroids JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2011 VL - 65 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2011_65_1_a0/ LA - en ID - AUM_2011_65_1_a0 ER -
%0 Journal Article %A El-Nabulsi, Ahmad Rami %T Extended fractional calculus of variations, complexified geodesics and Wong’s fractional equations on complex plane and on Lie algebroids %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2011 %V 65 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUM_2011_65_1_a0/ %G en %F AUM_2011_65_1_a0
El-Nabulsi, Ahmad Rami. Extended fractional calculus of variations, complexified geodesics and Wong’s fractional equations on complex plane and on Lie algebroids. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 65 (2011) no. 1. http://geodesic.mathdoc.fr/item/AUM_2011_65_1_a0/
[1] Agrawal, O. P., Fractional variational calculus and the transversality conditions, J. Phys. A 39 (2006), 10375-10384.
[2] Agrawal, O. P., Fractional variational calculus in terms of Riesz fractional derivatives, J. Phys. A 40 (2007), 6287-6303.
[3] Agrawal, O. P., Tenreiro Machado, J. A. and Sabatier, J. (Editors), Fractional
[4] Derivatives and their Applications, Nonlinear Dynamics 38, no. 1-4 (2004).
[5] Almeida, R., Malinowska, A. B. and Torres, D. F. M., A fractional calculus of variations for multiple integrals with application to vibrating string, J. Math. Phys. 51, no. 3, 033503 (2010), 12 pp.
[6] Atanackovic, T. M., Konjik, S. and Pilipovic, S., Variational problems with fractional derivatives: Euler-Lagrange equations, J. Phys. A 41, no. 9, 095201 (2008), 12 pp.
[7] Baleanu, D., Agrawal, O. P., Fractional Hamilton formalism within Caputo’s derivative, Czechoslovak J. Phys. 56, no. 10-11 (2006), 1087-1092.
[8] Cannas da Silva, A., Weinstein, A., Geometric models for noncommutative algebras, Berkeley Mathematics Lecture Notes, 10. American Mathematical Society, Providence, 1999.
[9] Connes, A., A survey of foliations and operator algebras. Operator algebras and applications, Part I, pp. 521-628, Proc. Sympos. Pure Math. 38, Amer. Math. Soc., Providence, R. I., (1982).
[10] El-Nabulsi, R. A., A fractional approach to nonconservative Lagrangian dynamical systems, Fizika A 14, no. 4, (2005) 289-298.
[11] El-Nabulsi, R. A., A fractional action-like variational approach of some classical, quantum and geometrical dynamics, Int. J. Appl. Math. 17 (2005), 299-317.
[12] El-Nabulsi, R. A., Fractional field theories from multi-dimensional fractional variational problems, Int. J. Geom. Methods Mod. Phys. 5 (2008), 863-892.
[13] El-Nabulsi, R. A., Complexified dynamical systems from real fractional actionlike with time-dependent fractional dimension on multifractal sets, Invited contribution to The 3rd International Conference on Complex Systems and Applications, University of Le Havre, Le Havre, Normandy, France, June 29-July 02, (2009).
[14] El-Nabulsi, R. A., Fractional variational problems from extended exponentially fractional integral, Appl. Math. Comp. 217, no. 22 (2011), 9492-9496.
[15] El-Nabulsi, R. A., Fractional action-like variational problems in holonomic, nonholonomic and semi-holonomic constrained and dissipative dynamical systems, Chaos Solitons Fractals 42 (2009), 52-61.
[16] El-Nabulsi, R. A., Fractional action-like variational problems in holonomic, nonholonomic and semi-holonomic constrained and dissipative dynamical systems, Chaos Solitons Fractals 42 (2009), 52-61.
[17] El-Nabulsi, R. A., The fractional calculus of variations from extended Erdelyi-Kober operator, Int. J. Mod. Phys. B 23 (2009), 3349-3361.
[18] El-Nabulsi, R. A., Fractional quantum Euler-Cauchy equation in the Schrodinger picture, complexified harmonic oscillators and emergence of complexified Lagrangian and Hamiltonian dynamics, Mod. Phys. Lett. B 23 (2009), 3369-3386.
[19] El-Nabulsi, R. A., Complexified fractional heat kernel and physics beyond the spectral triplet action in noncommutative geometry, Int. J. Geom. Methods Mod. Phys. 6 (2009), 941-963.
[20] El-Nabulsi, R. A., Fractional Dirac operators and left-right fractional Chamseddine-Connes spectral bosonic action principle in noncommutative geometry, Int. J. Geom. Methods Mod. Phys. 7 (2010), 95-134.
[21] El-Nabulsi, R. A., Modifications at large distances from fractional and fractal arguments, Fractals 18 (2010), 185-190.
[22] El-Nabulsi, R. A., Oscillating flat FRW dark energy dominated cosmology from periodic functional approach, Comm. Theor. Phys. 54, no. 01 (2010), 16-20.
[23] El-Nabulsi, R. A., A periodic functional approach to the calculus of variations and the problem of time-dependent damped harmonic oscillators, Appl. Math. Lett. 24, no. 10 (2011), 1647-1653.
[24] El-Nabulsi, R. A., Universal fractional Euler-Lagrange equation from a generalized fractional derivate operator, Central Europan J. Phys. 9, no. 1 (2011), 260-256.
[25] El-Nabulsi, R. A., Torres, D. F. M., Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order \((\alpha,\beta)\), Math. Methods Appl. Sci. 30 (2007), 1931-1939.
[26] El-Nabulsi, R. A, Torres, D. F. M., Fractional actionlike variational problems, J. Math. Phys. 49, no. 5, 053521 (2008), 7 pp.
[27] Frasin, B. A., Some applications of fractional calculus operators to the analytic part of harmonic univalent functions, Hacet. J. Math. Stat. 34 (2005), 1-7.
[28] Frederico, G. S. F., Torres, D. F. M., Constants of motion for fractional action-like variational problems, Int. J. Appl. Math. 19 (2006), 97-104.
[29] Frederico, G. S. F., Torres, D. F. M., Non-conservative Noether’s theorem for fractional action-like variational problems with intrinsic and observer times, Int. J. Ecol. Econ. Stat. 9, no. F07 (2007), 74-82.
[30] Frederico, G. S. F., Torres, D. F. M., Conservation laws for invariant functionals containing compositions, Appl. Anal. 86 (2007), 1117-1126.
[31] Frederico, G. S. F., Torres, D. F. M., A formulation of Noether’s theorem for fractional problems of the calculus of variations, J. Math. Anal. Appl. 334 (2007), 834-846.
[32] Frederico, G. S. F., Torres, D. F. M., Fractional optimal control in the sense of Caputo and the fractional Noether’s theorem, Int. Math. Forum 3, no. 9-12 (2008), 479-493.
[33] Frederico, G. S. F., Torres, D. F. M., Fractional optimal control in the sense of Caputo and the fractional Noether’s theorem, Int. Math. Forum 3, no. 9-12 (2008), 479–493.
[34] Glockner, H., Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups, J. Funct. Anal. 194 (2002), 347-409.
[35] Glockner, H., Neeb, K. H., Banach-Lie quotients, enlargibility, and universal complexifications, J. Reine Angew. Math. 560 (2003), 1-28.
[36] Goldfain, E., Fractional dynamics, Cantorian space-time and the gauge hierarchy problem, Chaos Solitons Fractals 22 (2004), 513-520.
[37] Goldfain, E., Complexity in quantum field theory and physics beyond the standard model, Chaos Solitons Fractals 28 (2006), 913-922.
[38] Goldfain, E., Fractional dynamics and the standard model for particle physics, Commun. Nonlinear Sci. Numer. Simul. 13 (2008), 1397-1404.
[39] Gualtieri, M., Generalized complex geometry, arXiv:math/0703298v2.
[40] Gukov, S., Witten, E., Gauge theory, ramification, and the geometric Langlands program, Current developments in mathematics, 2006, 35-180, Int. Press, Somerville, MA, 2008.
[41] Herrmann, R., Fractional dynamic symmetries and the ground state properties of nuclei, arXiv:0806.2300v2.
[42] Herrmann, R., Fractional spin – a property of particles described with a fractional Schrodinger equation, arXiv:0805.3434v1.
[43] Hilfer, R. (Editor), Applications of Fractional Calculus in Physics, Word Scientific Publishing Co., River Edge, NJ, 2000.
[44] Ivan, G., Ivan, M. and Opris, D., Fractional Euler–Lagrange and fractional Wong equations for Lie algebroids, Proceedings of the 4th International Colloquium Mathematics and Numerical Physics, October 6-8, 2006, Bucharest, Romania, 73-80.
[45] Kapustin, A., Witten, E., Electric-magnetic duality and the geometric Langlands program, Commun. Number Theory Phys. 1 (2007), 1-236.
[46] Kosyakov, B. P., The field of an arbitrarily moving colored charge, Teoret. Mat. Fiz. 87 (1991), 422-425 (Russian); translation in Theoret. and Math. Phys. 87 (1991), 632-635.
[47] Landsman, L. P., Lie groupoids and Lie algebroids in physics and noncommutative geometry, J. Geom. Phys. 56 (2006), 24-54.
[48] Lubke, M., Okonek, C., Moduli spaces of simple bundles and Hermitian-Einstein connections, Math. Ann. 276 (1987), 663-674.
[49] Lubke, M., Teleman, A., The Kobayashi-Hitchin Correspondence, World Scientific Publishing Co., Inc., River Edge, NJ, 1995.
[50] Mackenzie, K. C. H., General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, Vol. 213, Cambridge University Press, Cambridge, 2005.
[51] Martinez, E., Lagrangian mechanics on Lie algebroids, Acta Appl. Math. 67 (2001), 295-320.
[52] Martinez, E., Geometric formulation of mechanics on Lie algebroids, Proceedings of the VIII Fall Workshop on Geometry and Physics, Medina del Campo, 1999, Publicaciones de la RSME 2, (2001) 209-222.
[53] Martinez, E., Lie algebroids in classical mechanics and optimal control, SIGMA Symmetry Integrability Geom. Methods Appl. 3 (2007), Paper 050, 17 pp.
[54] Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley Sons Inc., New York, 1993.
[55] [54] Oldham, K. B., Spanier, J., The Fractional Calculus. Theory and Applications of Differentiation and Integration to Arbitrary Order, Acad. Press, New York-London, 1974.
[56] Ortigueira, M. D., Tenreiro Machado, J. A. (Editors), Fractional Signal Processing and Applications, Signal Processing 83, no. 11 (2003).
[57] Ortigueira, M. D., Tenreiro Machado, J. A. (Editors), Fractional Calculus Applications in Signals and Systems, Signal Processing 86, no. 10 (2006).
[58] Podlubny, I., Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications, Academic Press Inc., San Diego, CA, 1999.
[59] Riewe, F., Nonconservative Lagrangian and Hamiltonian mechanics, Phys. Rev. E (3) 53 (1996), 1890-1899.
[60] Samko, S., Kilbas A. and Marichev, O., Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993.
[61] Tenreiro Machado, J. A. (Editor), Fractional Order Calculus and its Applications, Nonlinear Dynamics 29, no. 1-4 (2002).
[62] Tenreiro Machado, J. A., Barbosa, R. S. (Editors), Fractional Differentiation and its Applications, J. Vib. Control 14, no. 9-10 (2008).
[63] Tenreiro Machado, J. A., Luo, A. (Editors), Discontinuous and Fractional Dynamical Systems, ASME Journal of Computational and Nonlinear Dynamics 3, no. 2 (2008).
[64] Weinstein, A., Lagrangian mechanics and groupoids, Mechanics day (Waterloo, ON, 1992), 207-231, Fields Inst. Commun., 7, Amer. Math. Soc., Providence, RI, 1996.
[65] Weinstein, A., Poisson geometry. Symplectic geometry, Differential Geom. Appl. 9, no. 1-2 (1998), 213-238.
[66] Zavada, P., Operator of fractional derivative in the complex plane, Comm. Math. Phys. 192 (1998), 261-285.