On the real \(X\)-ranks of points of \(\mathbb{P}^n(\mathbb{R})\) with respect to a real variety \(X\subset\mathbb{P}^n\)
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 54 (2010) no. 2.

Voir la notice de l'article provenant de la source Library of Science

Let X⊂ℙ^n be an integral and non-degenerate m-dimensional variety defined over ℝ. For any P ∈ℙ^n(ℝ) the real X-rank r_X,ℝ(P) is the minimal cardinality of S⊂ X(ℝ) such that P∈〈 S〉. Here we extend to the real case an upper bound for the X-rank due to Landsberg and Teitler.
Keywords: Ranks, real variety, structured rank
@article{AUM_2010_54_2_a7,
     author = {Ballico, Edoardo},
     title = {On the real {\(X\)-ranks} of points of {\(\mathbb{P}^n(\mathbb{R})\)} with respect to a real variety {\(X\subset\mathbb{P}^n\)}},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2010_54_2_a7/}
}
TY  - JOUR
AU  - Ballico, Edoardo
TI  - On the real \(X\)-ranks of points of \(\mathbb{P}^n(\mathbb{R})\) with respect to a real variety \(X\subset\mathbb{P}^n\)
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2010
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2010_54_2_a7/
LA  - en
ID  - AUM_2010_54_2_a7
ER  - 
%0 Journal Article
%A Ballico, Edoardo
%T On the real \(X\)-ranks of points of \(\mathbb{P}^n(\mathbb{R})\) with respect to a real variety \(X\subset\mathbb{P}^n\)
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2010
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2010_54_2_a7/
%G en
%F AUM_2010_54_2_a7
Ballico, Edoardo. On the real \(X\)-ranks of points of \(\mathbb{P}^n(\mathbb{R})\) with respect to a real variety \(X\subset\mathbb{P}^n\). Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 54 (2010) no. 2. http://geodesic.mathdoc.fr/item/AUM_2010_54_2_a7/

[1] Albera, L., Chevalier, P., Comon, P. and Ferreol, A., On the virtual array concept for higher order array processing, IEEE Trans. Signal Process. 53(4) (2005), 1254-1271.

[2] Arbarello, E., Cornalba, M., Griffiths, P. and Harris, J., Geometry of Algebraic Curves. I, Springer-Verlag, New York, 1985.

[3] Ballico, E., Ranks of subvarieties of Pn over non-algebraically closed fields, Int. J. Pure Appl. Math. 61(1) (2010), 7-10.

[4] Ballico, E., Subsets of the variety \(X \subset \mathbb{P}^n\) computing the \(X\)-rank of a point of \(\mathbb{P}^n\), preprint.

[5] Bernardi, A., Gimigliano, A. and Ida, M., Computing symmetric rank for symmetric tensors, J. Symbolic Comput. 46 (2011), 34-55.

[6] Bochnak, J., Coste, M. and Roy, F.-M., Real Algebraic Geometry, Translated from the 1987 French original. Revised by the authors. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 36, Springer-Verlag, Berlin, 1998.

[7] Buczynski, J., Landsberg, J. M., Ranks of tensors and a generalization of secant varieties, arXiv:0909.4262v1 [math.AG].

[8] Comas, G., Seiguer, M., On the rank of a binary form, arXiv:math.AG/0112311.

[9] Comon, P., Golub, G., Lim, L.-H. and Mourrain, B., Symmetric tensors and symmetric tensor rank, SIAM J. Matrix Anal. Appl. 30(3) (2008), 1254-1279.

[10] Hartshorne, R., Algebraic Geometry, Springer-Verlag, Berlin, 1977.

[11] Landsberg, J. M., Teitler, Z., On the ranks and border ranks of symmetric tensors, Found. Comput. Math. 10 (2010), 339-366.

[12] Lang, S., Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965.