Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2010_54_2_a7, author = {Ballico, Edoardo}, title = {On the real {\(X\)-ranks} of points of {\(\mathbb{P}^n(\mathbb{R})\)} with respect to a real variety {\(X\subset\mathbb{P}^n\)}}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {54}, number = {2}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2010_54_2_a7/} }
TY - JOUR AU - Ballico, Edoardo TI - On the real \(X\)-ranks of points of \(\mathbb{P}^n(\mathbb{R})\) with respect to a real variety \(X\subset\mathbb{P}^n\) JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2010 VL - 54 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2010_54_2_a7/ LA - en ID - AUM_2010_54_2_a7 ER -
%0 Journal Article %A Ballico, Edoardo %T On the real \(X\)-ranks of points of \(\mathbb{P}^n(\mathbb{R})\) with respect to a real variety \(X\subset\mathbb{P}^n\) %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2010 %V 54 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUM_2010_54_2_a7/ %G en %F AUM_2010_54_2_a7
Ballico, Edoardo. On the real \(X\)-ranks of points of \(\mathbb{P}^n(\mathbb{R})\) with respect to a real variety \(X\subset\mathbb{P}^n\). Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 54 (2010) no. 2. http://geodesic.mathdoc.fr/item/AUM_2010_54_2_a7/
[1] Albera, L., Chevalier, P., Comon, P. and Ferreol, A., On the virtual array concept for higher order array processing, IEEE Trans. Signal Process. 53(4) (2005), 1254-1271.
[2] Arbarello, E., Cornalba, M., Griffiths, P. and Harris, J., Geometry of Algebraic Curves. I, Springer-Verlag, New York, 1985.
[3] Ballico, E., Ranks of subvarieties of Pn over non-algebraically closed fields, Int. J. Pure Appl. Math. 61(1) (2010), 7-10.
[4] Ballico, E., Subsets of the variety \(X \subset \mathbb{P}^n\) computing the \(X\)-rank of a point of \(\mathbb{P}^n\), preprint.
[5] Bernardi, A., Gimigliano, A. and Ida, M., Computing symmetric rank for symmetric tensors, J. Symbolic Comput. 46 (2011), 34-55.
[6] Bochnak, J., Coste, M. and Roy, F.-M., Real Algebraic Geometry, Translated from the 1987 French original. Revised by the authors. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 36, Springer-Verlag, Berlin, 1998.
[7] Buczynski, J., Landsberg, J. M., Ranks of tensors and a generalization of secant varieties, arXiv:0909.4262v1 [math.AG].
[8] Comas, G., Seiguer, M., On the rank of a binary form, arXiv:math.AG/0112311.
[9] Comon, P., Golub, G., Lim, L.-H. and Mourrain, B., Symmetric tensors and symmetric tensor rank, SIAM J. Matrix Anal. Appl. 30(3) (2008), 1254-1279.
[10] Hartshorne, R., Algebraic Geometry, Springer-Verlag, Berlin, 1977.
[11] Landsberg, J. M., Teitler, Z., On the ranks and border ranks of symmetric tensors, Found. Comput. Math. 10 (2010), 339-366.
[12] Lang, S., Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965.