Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2010_54_1_a5, author = {Zhang, Xingyong and Tang, Xianhua}, title = {Periodic solutions for second-order {Hamiltonian} systems with a {p-Laplacian}}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {54}, number = {1}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2010_54_1_a5/} }
TY - JOUR AU - Zhang, Xingyong AU - Tang, Xianhua TI - Periodic solutions for second-order Hamiltonian systems with a p-Laplacian JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2010 VL - 54 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2010_54_1_a5/ LA - en ID - AUM_2010_54_1_a5 ER -
%0 Journal Article %A Zhang, Xingyong %A Tang, Xianhua %T Periodic solutions for second-order Hamiltonian systems with a p-Laplacian %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2010 %V 54 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUM_2010_54_1_a5/ %G en %F AUM_2010_54_1_a5
Zhang, Xingyong; Tang, Xianhua. Periodic solutions for second-order Hamiltonian systems with a p-Laplacian. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 54 (2010) no. 1. http://geodesic.mathdoc.fr/item/AUM_2010_54_1_a5/
[1] Berger, M.S., Schechter, M., On the solvability of semilinear gradient operator equations, Adv. Math. 25 (1977), 97-132.
[2] Mawhin, J., Semi-coercive monotone variational problems, Acad. Roy. Belg. Bull. Cl. Sci. 73 (1987), 118-130.
[3] Mawhin, J., Willem, M., Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York, 1989.
[4] Mawhin, J., Willem, M., Critical points of convex perturbations of some indefinite quadratic forms and semilinear boundary value problems at resonance, Ann. Inst. H. Poincare Anal. Non Lin´eaire 3 (1986), 431-453.
[5] Rabinowitz, P. H., On subharmonic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 33 (1980), 609-633.
[6] Rabinowitz, P. H., Minimax methods in critical point theory with applications to differential equations, in: CBMS Regional Conf. Ser. in Math., Vol. 65, American Mathematical Society, Providence, RI, 1986.
[7] Tang, C. L., Periodic solutions of nonautonomous second order systems with \(\gamma\)-quasisubadditive potential, J. Math. Anal. Appl. 189 (1995), 671-675.
[8] Tang, C. L., Periodic solutions of nonautonomous second order systems, J. Math. Anal. Appl. 202 (1996), 465-469.
[9] Tang, C. L., Periodic solutions of nonautonomous second order systems with sublinear nonlinearity, Proc. Amer. Math. Soc. 126 (1998), 3263-3270.
[10] Tang, C. L.,Wu, X. P., Periodic solutions for second order systems with not uniformly coercive potential, J. Math. Anal. Appl. 259 (2001), 386-397.
[11] Willem, M., Oscillations forcees de systemes hamiltoniens, Publ. Math. Fac. Sci. Besancon, Anal. Non Lineaire Annee 1980-1981, Expose No. 4, 16 p. (1981) (French).
[12] Wu, X., Saddle point characterization and multiplicity of periodic solutions of nonautonomous second order systems, Nonlinear Anal. TMA 58 (2004), 899-907.
[13] Wu, X. P., Tang, C. L., Periodic solutions of a class of nonautonomous second order systems, J. Math. Anal. Appl. 236 (1999), 227-235.
[14] Zhao F., Wu, X., Periodic solutions for a class of non-autonomous second order systems, J. Math. Anal. Appl. 296 (2004), 422-434.
[15] Zhao F., Wu, X., Existence and multiplicity of periodic solution for non-autonomous second-order systems with linear nonlinearity, Nonlinear Anal. 60 (2005), 325-335.
[16] Xu, B., Tang, C. L., Some existence results on periodic solutions of ordinary
[17] p-Lapalcian systems, J. Math. Anal. Appl. 333 (2007), 1228-1236.
[18] Tian, Y., Ge, W., Periodic solutions of non-autonoumous second-order systems with a p-Lapalcian, Nonlinear Anal. TMA 66 (2007), 192-203.
[19] Zhang, X., Tang, X., Periodic solutions for an ordinary p-Laplacian system, Taiwanese J. Math. (in press).