Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2010_54_1_a3, author = {Aouf, M. K. and Shamandy, A. and Mostafa, A. O. and Madian, S. M.}, title = {Inclusion properties of certain subclasses of analytic functions defined by generalized {Salagean} operator}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {54}, number = {1}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2010_54_1_a3/} }
TY - JOUR AU - Aouf, M. K. AU - Shamandy, A. AU - Mostafa, A. O. AU - Madian, S. M. TI - Inclusion properties of certain subclasses of analytic functions defined by generalized Salagean operator JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2010 VL - 54 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2010_54_1_a3/ LA - en ID - AUM_2010_54_1_a3 ER -
%0 Journal Article %A Aouf, M. K. %A Shamandy, A. %A Mostafa, A. O. %A Madian, S. M. %T Inclusion properties of certain subclasses of analytic functions defined by generalized Salagean operator %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2010 %V 54 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUM_2010_54_1_a3/ %G en %F AUM_2010_54_1_a3
Aouf, M. K.; Shamandy, A.; Mostafa, A. O.; Madian, S. M. Inclusion properties of certain subclasses of analytic functions defined by generalized Salagean operator. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 54 (2010) no. 1. http://geodesic.mathdoc.fr/item/AUM_2010_54_1_a3/
[1] Al-Oboudi, F. M., On univalent functions defined by a generalized Salagean operator, Internat. J. Math. Math. Sci. 27 (2004), 1429-1436.
[2] Bernardi, S. D., Convex and starlike univalent functions, Trans. Amer. Math. Soc. 35 (1969), 429-446.
[3] Choi, J. H., Saigo, M. and Srivastava, H. M., Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276 (2002), 432-445.
[4] Eenigenburg, P., Miller, S. S., Mocanu, P. T. and Reade, M. O., On a Briot–Bouquet differential subordination, General inequalities, 3 (Oberwolfach, 1981), 339-348, Internat. Schriftenreihe Numer. Math., 64, Birkhauser, Basel, 1983.
[5] Kim, Y. C., Choi, J. H. and Sugawa, T., Coefficient bounds and convolution properties for certain classes of close-to-convex functions, Proc. Japan Acad. Ser. A Math. Sci. 76 (2000), 95-98.
[6] Libera, R. J., Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755-758.
[7] Ma, W. C., Minda, D., An internal geometric characterization of strongly starlike functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 45 (1991), 89-97.
[8] Miller, S. S., Mocanu, P. T., Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), 157-171.
[9] Owa, S., Srivastava, H. M., Some applications of the generalized Libera operator, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), 125-128.
[10] Salagean, G. S., Subclasses of univalent functions, Complex analysis - fifth
[11] Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 362-372, Lecture Notes in Math., 1013, Springer, Berlin, 1983.
[12] Srivastava, H. M., Owa, S. (Editors), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, 1992.