Inclusion properties of certain subclasses of analytic functions defined by generalized Salagean operator
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 54 (2010) no. 1.

Voir la notice de l'article provenant de la source Library of Science

Let A denote the class of analytic functions with the normalization f(0)=f^'(0)-1=0 in the open unit disc U={z:| z| lt;1}.  Set f_λ^n(z)=z+∑_k=2^∞[1+λ (k-1)]^nz^k (n∈ N_0; λ≥ 0; z∈ U), and define f_λ ,μ^n in terms of the Hadamard product f_λ^n(z)∗ f_λ ,μ^n=z/(1-z)^μ (μ gt;0; z∈ U). In this paper, we introduce several subclasses of analytic functions defined by means of the operator I_λ ,μ^n:A⟶ A, given by I_λ ,μ^nf(z)=f_λ ,μ^n(z)∗ f(z) (f∈ A; n∈ N_0; λ≥ 0; μ gt;0). Inclusion properties of these classes and the classes involving the generalized Libera integral operator are also considered.
Keywords: Analytic, Hadamard product, starlike, convex
@article{AUM_2010_54_1_a3,
     author = {Aouf, M. K. and Shamandy, A. and Mostafa, A. O. and Madian, S. M.},
     title = {Inclusion properties of certain subclasses of analytic functions defined by generalized {Salagean} operator},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2010_54_1_a3/}
}
TY  - JOUR
AU  - Aouf, M. K.
AU  - Shamandy, A.
AU  - Mostafa, A. O.
AU  - Madian, S. M.
TI  - Inclusion properties of certain subclasses of analytic functions defined by generalized Salagean operator
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2010
VL  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2010_54_1_a3/
LA  - en
ID  - AUM_2010_54_1_a3
ER  - 
%0 Journal Article
%A Aouf, M. K.
%A Shamandy, A.
%A Mostafa, A. O.
%A Madian, S. M.
%T Inclusion properties of certain subclasses of analytic functions defined by generalized Salagean operator
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2010
%V 54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2010_54_1_a3/
%G en
%F AUM_2010_54_1_a3
Aouf, M. K.; Shamandy, A.; Mostafa, A. O.; Madian, S. M. Inclusion properties of certain subclasses of analytic functions defined by generalized Salagean operator. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 54 (2010) no. 1. http://geodesic.mathdoc.fr/item/AUM_2010_54_1_a3/

[1] Al-Oboudi, F. M., On univalent functions defined by a generalized Salagean operator, Internat. J. Math. Math. Sci. 27 (2004), 1429-1436.

[2] Bernardi, S. D., Convex and starlike univalent functions, Trans. Amer. Math. Soc. 35 (1969), 429-446.

[3] Choi, J. H., Saigo, M. and Srivastava, H. M., Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276 (2002), 432-445.

[4] Eenigenburg, P., Miller, S. S., Mocanu, P. T. and Reade, M. O., On a Briot–Bouquet differential subordination, General inequalities, 3 (Oberwolfach, 1981), 339-348, Internat. Schriftenreihe Numer. Math., 64, Birkhauser, Basel, 1983.

[5] Kim, Y. C., Choi, J. H. and Sugawa, T., Coefficient bounds and convolution properties for certain classes of close-to-convex functions, Proc. Japan Acad. Ser. A Math. Sci. 76 (2000), 95-98.

[6] Libera, R. J., Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755-758.

[7] Ma, W. C., Minda, D., An internal geometric characterization of strongly starlike functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 45 (1991), 89-97.

[8] Miller, S. S., Mocanu, P. T., Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), 157-171.

[9] Owa, S., Srivastava, H. M., Some applications of the generalized Libera operator, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), 125-128.

[10] Salagean, G. S., Subclasses of univalent functions, Complex analysis - fifth

[11] Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 362-372, Lecture Notes in Math., 1013, Springer, Berlin, 1983.

[12] Srivastava, H. M., Owa, S. (Editors), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, 1992.