Horizontal lift of symmetric connections to the bundle of volume forms \(\mathcal{V}\)
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 54 (2010) no. 1.

Voir la notice de l'article provenant de la source Library of Science

In this paper we present the horizontal lift of a symmetric affine connection with respect to another affine connection to the bundle of volume forms 𝒱 and give formulas for its curvature tensor, Ricci tensor and the scalar curvature. Next, we give some properties of the horizontally lifted vector fields and certain infinitesimal transformations. At the end, we consider some substructures of a F(3, 1)-structure on 𝒱.
Keywords: Horizontal lift, \(\pi\)-conjugate connection, Killing field, infinitesimal transformation, \(F(3, 1)\)-structure, FK, FAK, FNK, FQK, FH-structure
@article{AUM_2010_54_1_a2,
     author = {Gasior, Anna},
     title = {Horizontal lift of symmetric connections to the bundle of volume forms {\(\mathcal{V}\)}},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2010_54_1_a2/}
}
TY  - JOUR
AU  - Gasior, Anna
TI  - Horizontal lift of symmetric connections to the bundle of volume forms \(\mathcal{V}\)
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2010
VL  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2010_54_1_a2/
LA  - en
ID  - AUM_2010_54_1_a2
ER  - 
%0 Journal Article
%A Gasior, Anna
%T Horizontal lift of symmetric connections to the bundle of volume forms \(\mathcal{V}\)
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2010
%V 54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2010_54_1_a2/
%G en
%F AUM_2010_54_1_a2
Gasior, Anna. Horizontal lift of symmetric connections to the bundle of volume forms \(\mathcal{V}\). Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 54 (2010) no. 1. http://geodesic.mathdoc.fr/item/AUM_2010_54_1_a2/

[1] do Carmo, M. P., Riemannian Geometry, Graduate Texts in Mathematics 166, Birkhauser Boston Inc., Boston Ma., 1992.

[2] Das, L. S., Complete lifts of a structure satisfying \(F^K-(-1)^{K+1} = 0\), Internat. J. Math. Math. Sci. 15 (1992), 803-808.

[3] Dhooghe, P. F., The T. Y. Thomas construction of projectively related manifolds, Geom. Dedicata, 55 (1995), 221-235.

[4] Dhooghe, P. F., Van Vlierden A., Projective geometry on the bundle of volume forms, J. Geom. 62 (1998), 66-83.

[5] Gąsior, A., Curvatures for horizontal lift of Riemannian metric, Ann. Univ. Mariae Curie-Skłodowska Sect. A 60 (2006), 17-21.

[6] Ishihara, S., Yano, K., Structure defined by \(f\) satisfying \(f^3+f = 0\), Proc. U.S.-Japan Seminar in Differential Geometry (Kyoto, 1965) pp. 153-166 Nippon Hyoronsha, Tokyo, 1966.

[7] Kobayashi. S., Nomizu, K., Foundations of Differential Geometry, John Wiley Sons, New York-London, 1969.

[8] Molino, P., Riemannian Foliations, Progression Mathematics, 73, Birkhauser Boston Inc., Boston Ma., 1988.

[9] Miernowski A., Mozgawa W., Horizontal lift to the bundle of volume forms, Ann. Univ. Mariae Curie-Skłodowska Sect. A 57 (2003), 69-75.

[10] Norden, A. P., Spaces with Affine Connection, Izdat. Nauka, Moscow, 1976 (Russian).

[11] Radziszewski, K., \(\pi\)-geodesics and lines of shadow, Colloq. Math. 26 (1972), 157-163.

[12] Rompała, W., Liftings of \(\pi\)-conjugate connections, Ann. Univ. Mariae Curie-Skłodowska Sect. A 32 (1978), 109-126.

[13] Schouten, J. A., Ricci-Calculus, 2nd ed., Springer-Verlag, Berlin, Gottingen, Heidelberg, 1954.

[14] Singh, K. D., Singh, R., Some \(f(3,\varepsilon)\)-structure manifolds, Demonstratio Math. 10 (1977), 637-645.

[15] Yamauchi, K., On Riemannian manifolds admitting infinitesimal projective transformations, Hokkaido Math. J. 16 (1987), 115-125.

[16] Yano, K., On structure defined by tensor field \(f\) of type (1, 1) satisfying \(f^3 + f = 0\), Tensor (N.S) 14 (1963), 99-109.