Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2010_54_1_a2, author = {Gasior, Anna}, title = {Horizontal lift of symmetric connections to the bundle of volume forms {\(\mathcal{V}\)}}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {54}, number = {1}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2010_54_1_a2/} }
TY - JOUR AU - Gasior, Anna TI - Horizontal lift of symmetric connections to the bundle of volume forms \(\mathcal{V}\) JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2010 VL - 54 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2010_54_1_a2/ LA - en ID - AUM_2010_54_1_a2 ER -
Gasior, Anna. Horizontal lift of symmetric connections to the bundle of volume forms \(\mathcal{V}\). Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 54 (2010) no. 1. http://geodesic.mathdoc.fr/item/AUM_2010_54_1_a2/
[1] do Carmo, M. P., Riemannian Geometry, Graduate Texts in Mathematics 166, Birkhauser Boston Inc., Boston Ma., 1992.
[2] Das, L. S., Complete lifts of a structure satisfying \(F^K-(-1)^{K+1} = 0\), Internat. J. Math. Math. Sci. 15 (1992), 803-808.
[3] Dhooghe, P. F., The T. Y. Thomas construction of projectively related manifolds, Geom. Dedicata, 55 (1995), 221-235.
[4] Dhooghe, P. F., Van Vlierden A., Projective geometry on the bundle of volume forms, J. Geom. 62 (1998), 66-83.
[5] Gąsior, A., Curvatures for horizontal lift of Riemannian metric, Ann. Univ. Mariae Curie-Skłodowska Sect. A 60 (2006), 17-21.
[6] Ishihara, S., Yano, K., Structure defined by \(f\) satisfying \(f^3+f = 0\), Proc. U.S.-Japan Seminar in Differential Geometry (Kyoto, 1965) pp. 153-166 Nippon Hyoronsha, Tokyo, 1966.
[7] Kobayashi. S., Nomizu, K., Foundations of Differential Geometry, John Wiley Sons, New York-London, 1969.
[8] Molino, P., Riemannian Foliations, Progression Mathematics, 73, Birkhauser Boston Inc., Boston Ma., 1988.
[9] Miernowski A., Mozgawa W., Horizontal lift to the bundle of volume forms, Ann. Univ. Mariae Curie-Skłodowska Sect. A 57 (2003), 69-75.
[10] Norden, A. P., Spaces with Affine Connection, Izdat. Nauka, Moscow, 1976 (Russian).
[11] Radziszewski, K., \(\pi\)-geodesics and lines of shadow, Colloq. Math. 26 (1972), 157-163.
[12] Rompała, W., Liftings of \(\pi\)-conjugate connections, Ann. Univ. Mariae Curie-Skłodowska Sect. A 32 (1978), 109-126.
[13] Schouten, J. A., Ricci-Calculus, 2nd ed., Springer-Verlag, Berlin, Gottingen, Heidelberg, 1954.
[14] Singh, K. D., Singh, R., Some \(f(3,\varepsilon)\)-structure manifolds, Demonstratio Math. 10 (1977), 637-645.
[15] Yamauchi, K., On Riemannian manifolds admitting infinitesimal projective transformations, Hokkaido Math. J. 16 (1987), 115-125.
[16] Yano, K., On structure defined by tensor field \(f\) of type (1, 1) satisfying \(f^3 + f = 0\), Tensor (N.S) 14 (1963), 99-109.