Voir la notice de l'article provenant de la source Analele Stiintifice ale Universitatii Ovidius Constanta website
@article{ASUO_2024_XXXII_3_a10, author = {Maja Obradovi\'c and Marija Milo\v{s}evi\'c ~ }, title = {A note on almost sure exponential stability of $\theta${-Euler-Maruyama} approximation for neutral stochastic differential equations with time-dependent delay when $\theta\in(\frac{1}{2},1)$}, journal = {Analele Universit\u{a}\c{t}ii "Ovidius" Constan\c{t}a Seria Matematic\u{a}}, publisher = {mathdoc}, volume = {XXXII}, number = {3}, year = {2024}, url = {http://geodesic.mathdoc.fr/item/ASUO_2024_XXXII_3_a10/} }
TY - JOUR AU - Maja Obradović AU - Marija Milošević TI - A note on almost sure exponential stability of $\theta$-Euler-Maruyama approximation for neutral stochastic differential equations with time-dependent delay when $\theta\in(\frac{1}{2},1)$ JO - Analele Universităţii "Ovidius" Constanţa Seria Matematică PY - 2024 VL - XXXII IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ASUO_2024_XXXII_3_a10/ ID - ASUO_2024_XXXII_3_a10 ER -
%0 Journal Article %A Maja Obradović %A Marija Milošević %T A note on almost sure exponential stability of $\theta$-Euler-Maruyama approximation for neutral stochastic differential equations with time-dependent delay when $\theta\in(\frac{1}{2},1)$ %J Analele Universităţii "Ovidius" Constanţa Seria Matematică %D 2024 %V XXXII %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ASUO_2024_XXXII_3_a10/ %F ASUO_2024_XXXII_3_a10
Maja Obradović; Marija Milošević . A note on almost sure exponential stability of $\theta$-Euler-Maruyama approximation for neutral stochastic differential equations with time-dependent delay when $\theta\in(\frac{1}{2},1)$. Analele Universităţii "Ovidius" Constanţa Seria Matematică, XXXII (2024) no. 3. http://geodesic.mathdoc.fr/item/ASUO_2024_XXXII_3_a10/