A note on almost sure exponential stability of $\theta$-Euler-Maruyama approximation for neutral stochastic differential equations with time-dependent delay when $\theta\in(\frac{1}{2},1)$
Analele Universităţii "Ovidius" Constanţa Seria Matematică, XXXII (2024) no. 3.

Voir la notice de l'article provenant de la source Analele Stiintifice ale Universitatii Ovidius Constanta website

@article{ASUO_2024_XXXII_3_a10,
     author = {Maja Obradovi\'c and Marija Milo\v{s}evi\'c ~
							},
     title = {A note on almost sure exponential stability of $\theta${-Euler-Maruyama} approximation for neutral stochastic differential equations with time-dependent delay when $\theta\in(\frac{1}{2},1)$},
     journal = {Analele Universit\u{a}\c{t}ii "Ovidius" Constan\c{t}a Seria Matematic\u{a}},
     publisher = {mathdoc},
     volume = {XXXII},
     number = {3},
     year = {2024},
     url = {http://geodesic.mathdoc.fr/item/ASUO_2024_XXXII_3_a10/}
}
TY  - JOUR
AU  - Maja Obradović
AU  - Marija Milošević  
							
TI  - A note on almost sure exponential stability of $\theta$-Euler-Maruyama approximation for neutral stochastic differential equations with time-dependent delay when $\theta\in(\frac{1}{2},1)$
JO  - Analele Universităţii "Ovidius" Constanţa Seria Matematică
PY  - 2024
VL  - XXXII
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ASUO_2024_XXXII_3_a10/
ID  - ASUO_2024_XXXII_3_a10
ER  - 
%0 Journal Article
%A Maja Obradović
%A Marija Milošević  
							
%T A note on almost sure exponential stability of $\theta$-Euler-Maruyama approximation for neutral stochastic differential equations with time-dependent delay when $\theta\in(\frac{1}{2},1)$
%J Analele Universităţii "Ovidius" Constanţa Seria Matematică
%D 2024
%V XXXII
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ASUO_2024_XXXII_3_a10/
%F ASUO_2024_XXXII_3_a10
Maja Obradović; Marija Milošević  
							. A note on almost sure exponential stability of $\theta$-Euler-Maruyama approximation for neutral stochastic differential equations with time-dependent delay when $\theta\in(\frac{1}{2},1)$. Analele Universităţii "Ovidius" Constanţa Seria Matematică, XXXII (2024) no. 3. http://geodesic.mathdoc.fr/item/ASUO_2024_XXXII_3_a10/