Voir la notice de l'article provenant de la source Numdam
We prove that there are only finitely many complex numbers and with such that the three points and are simultaneously torsion points on the elliptic curve defined in Weierstrass form by . This gives an affirmative answer to a question raised by Masser and Zannier. We thus confirm a special case in two dimensions of the relative Manin-Mumford Conjecture formulated by Pink and Masser-Zannier.
@article{ASNSP_2013_5_12_3_687_0, author = {Habegger, Philipp}, title = {Torsion points on elliptic curves in {Weierstrass} form}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {687--715}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 12}, number = {3}, year = {2013}, mrnumber = {3137460}, zbl = {1281.14026}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2013_5_12_3_687_0/} }
TY - JOUR AU - Habegger, Philipp TI - Torsion points on elliptic curves in Weierstrass form JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2013 SP - 687 EP - 715 VL - 12 IS - 3 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2013_5_12_3_687_0/ LA - en ID - ASNSP_2013_5_12_3_687_0 ER -
%0 Journal Article %A Habegger, Philipp %T Torsion points on elliptic curves in Weierstrass form %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2013 %P 687-715 %V 12 %N 3 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2013_5_12_3_687_0/ %G en %F ASNSP_2013_5_12_3_687_0
Habegger, Philipp. Torsion points on elliptic curves in Weierstrass form. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 12 (2013) no. 3, pp. 687-715. http://geodesic.mathdoc.fr/item/ASNSP_2013_5_12_3_687_0/
[1] J. Ax, Some topics in differential algebraic geometry I: Analytic subgroups of algebraic groups, Amer. J. Math. 94 (1972), 1195–1204. | MR | Zbl
[2] D. Bertrand, Extensions de -modules et groupes de Galois différentiels, In: “-adic Analysis” (Trento, 1989), Lecture Notes in Math., Vol. 1454, Springer, Berlin, 1990, 125–141. | MR | Zbl
[3] D. Bertrand, Special points and Poincaré bi-extensions, with an Appendix by Bas Edixhoven, arXiv:1104.5178v1 (2011).
[4] E. Bombieri and W. Gubler, “Heights in Diophantine Geometry”, Cambridge University Press, 2006. | MR | Zbl
[5] S. David, Points de petite hauteur sur les courbes elliptiques, J. Number Theory 64 (1997), 104–129. | MR | Zbl
[6] P. Habegger, Special points on fibered powers of elliptic surfaces, J. Reine Angew. Math., to appear. | MR
[7] R. Hartshorne, “Algebraic Geometry”, Springer, 1997. | MR | Zbl
[8] D. Husemöller, “Elliptic Curves”, Springer, 2004. | MR | Zbl
[9] D. W. Masser and U. Zannier, Torsion points on families of squares of elliptic curves, Math. Ann. 352 (2012), 453-484. | MR
[10] D. W. Masser and U. Zannier, Torsion anomalous points and families of elliptic curves, C. R. Acad. Sci. Paris Sér. I 346 (2008), 491–494. | MR | Zbl
[11] D. W. Masser and U. Zannier, Torsion anomalous points and families of elliptic curves, Amer. J. Math. 132 (2010), 1677–1691. | MR | Zbl
[12] J. Pila and A. J. Wilkie, The rational points of a definable set, Duke Math. J. 133 (2006), 591–616. | MR | Zbl
[13] J. Pila and U. Zannier, Rational points in periodic analytic sets and the Manin-Mumford conjecture, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 19 (2008), 149–162. | MR | Zbl
[14] R. Pink, A Common generalization of the conjectures of André-Oort, Manin-Mumford, and Mordell-Lang, preprint (2005), 13 pp. | MR
[15] B. Poonen, Spans of Hecke points on modular curves, Math. Res. Lett. 8 (2001), 767–770. | MR | Zbl
[16] M. Raynaud, Sous-variétés d’une variété abélienne et points de torsion, In: “Arithmetic and geometry”, Vol. I, Progr. Math., Vol. 35, Birkhäuser Boston, Boston, MA, 1983, 327–352. | MR | Zbl
[17] P. Roquette, “Analytic Theory of Elliptic Functions over Local Fields”, Hamburger Mathematische Einzelschriften (N.F.), Heft 1, Vandenhoeck & Ruprecht, Göttingen, 1970. | MR | Zbl
[18] J. H. Silverman, “Advanced Topics in the Arithmetic of Elliptic Curves”, Graduate Texts in Mathematics, Vol. 151, Springer-Verlag, New York, 1994. | MR | Zbl
[19] J. H. Silverman, “The Arithmetic of Elliptic Curves”, Springer, 1986. | MR | Zbl
[20] L. van den Dries, A generalization of the Tarski-Seidenberg theorem, and some nondefinability results, Bull. Amer. Math. Soc. (N.S.) 15 (1986), 189–193. | MR | Zbl
[21] L. van den Dries, “Tame Topology and o-minimal Structures”, London Mathematical Society Lecture Note Series, Vol. 248, Cambridge University Press, Cambridge, 1998. | MR | Zbl
[22] B. Zilber, Exponential sums equations and the Schanuel conjecture, J. London Math. Soc. (2) 65 (2002), 27–44. | MR | Zbl