Voir la notice de l'article provenant de la source Numdam
We find bilateral global bounds for the fundamental solutions associated with some quasilinear and fully nonlinear operators perturbed by a nonnegative zero order term with natural growth under minimal assumptions. Important model problems involve the equations , for , and , for . Here and are the -Laplace and -Hessian operators respectively, and is an arbitrary positive measurable function (or measure). We will in addition consider the Sobolev regularity of the fundamental solution away from its pole.
Jaye, Benjamin J. 1 ; Verbitsky, Igor E. 1
@article{ASNSP_2013_5_12_1_93_0, author = {Jaye, Benjamin J. and Verbitsky, Igor E.}, title = {The fundamental solution of nonlinear equations with natural growth terms}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {93--139}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 12}, number = {1}, year = {2013}, mrnumber = {3088438}, zbl = {1278.35095}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2013_5_12_1_93_0/} }
TY - JOUR AU - Jaye, Benjamin J. AU - Verbitsky, Igor E. TI - The fundamental solution of nonlinear equations with natural growth terms JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2013 SP - 93 EP - 139 VL - 12 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2013_5_12_1_93_0/ LA - en ID - ASNSP_2013_5_12_1_93_0 ER -
%0 Journal Article %A Jaye, Benjamin J. %A Verbitsky, Igor E. %T The fundamental solution of nonlinear equations with natural growth terms %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2013 %P 93-139 %V 12 %N 1 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2013_5_12_1_93_0/ %G en %F ASNSP_2013_5_12_1_93_0
Jaye, Benjamin J.; Verbitsky, Igor E. The fundamental solution of nonlinear equations with natural growth terms. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 12 (2013) no. 1, pp. 93-139. http://geodesic.mathdoc.fr/item/ASNSP_2013_5_12_1_93_0/
[1] D. R. Adams and L. I. Hedberg, “Function Spaces and Potential Theory”, Grundlehren der mathematischen Wissenschaften, Vol. 314, Springer, Berlin–Heidelberg–New York, 1996. | MR | Zbl
[2] H. Abdul-Hamid and M.-F. Bidaut-Véron, On the connection between two quasilinear elliptic problems with source terms of order 0 or 1, Commun. Contemp. Math. 12 (2010), 727–788. | MR | Zbl
[3] D. H. Armitage and S. J. Gardiner, “Classical Potential Theory”, Springer Monographs in Math., Springer, London–Berlin–Heidelberg, 2001. | MR | Zbl
[4] M.-F. Bidaut-Véron, Local and global behavior of solutions of quasilinear equations of Emden-Fowler type, Arch. Ration. Mech. Anal. 107 (1989), 293–324. | MR | Zbl
[5] M.-F. Bidaut-Véron, R. Borghol and L. Véron, Boundary Harnack inequality and a priori estimates of singular solutions of quasilinear elliptic equations, Calc. Var. Partial Differential Equations 27 (2006), 159–177. | MR | Zbl
[6] M.-F. Bidaut-Véron and S. Pohozaev, Nonexistence results and estimates for some nonlinear elliptic problems, J. Anal. Math. 84 (2001), 1–49. | MR | Zbl
[7] M. Biroli, Schrödinger type and relaxed Dirichlet problems for the subelliptic -Laplacian, Potential Anal. 15 (2001), 1–16. | MR | Zbl
[8] L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations III. Functions of the eigenvalues of the Hessian, Acta Math. 155 (1985), 261–301. | MR | Zbl
[9] C. Cascante, J. M. Ortega and I. E. Verbitsky, Nonlinear potentials and two weight trace inequalities for general dyadic and radial kernels, Indiana Univ. Math. J. 53 (2004), 845–882. | MR | Zbl
[10] G. Dal Maso and A. Garroni, New results on the asymptotic behavior of Dirichlet problems in perforated domains, Math. Models Methods Appl. Sci. 4 (1994), 373–407. | MR | Zbl
[11] G. Dal Maso and A. Malusa, Some properties of reachable solutions of nonlinear elliptic equations with measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), 375–396 (1998). | MR | Zbl | EuDML | mathdoc-id
[12] G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), 741–808. | MR | Zbl | EuDML | mathdoc-id
[13] C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107–115. | MR | Zbl
[14] V. Ferone and F. Murat, Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small, Nonlinear Anal. 42 (2000), 1309–1326. | MR | Zbl
[15] M. Frazier and I. E. Verbitsky, Solvability conditions for a discrete model of Schrödinger’s equation, In: “Analysis, Partial Differential Equations and Applications”, The Vladimir Maz’ya Anniversary Volume, A. Cialdea, F. Lanzara and P. Ricci (eds.), Operator Theory: Adv. Appl. 179, Birkhäuser (2010), 65–80. | MR | Zbl
[16] M. Frazier and I. E. Verbitsky, Global Green’s function estimates, In: “Around the Research of Vladimir Maz’ya III, Analysis and Applications”, Ari Laptev (ed.), Intern. Math. Series 13, Springer (2010), 105–152. | MR | Zbl
[17] M. Frazier, F. Nazarov and I. E. Verbitsky, Global estimates for kernels of Neumann series, Green’s functions, and the conditional gauge, preprint 2013. | MR
[18] J. Garnett and P. Jones, BMO from dyadic BMO, Pacific J. Math. 99 (1982), 351–371. | MR | Zbl
[19] A. Grigor’yan and W. Hansen, Lower estimates for perturbed Green function, J. Anal. Math. 104 (2008), 25–58. | MR | Zbl
[20] K. Hansson, V. G. Maz’ya and I. E. Verbitsky, Criteria of solvability for multidimensional Riccati equations, Ark. Mat. 37 (1999), 87–120. | MR | Zbl
[21] L. I. Hedberg and T. Wolff, Thin sets in nonlinear potential theory, Ann. Inst. Fourier (Grenoble) 33 (1983), 161–187. | MR | Zbl | EuDML | mathdoc-id
[22] J. Heinonen, T. Kilpeläinen and O. Martio, “Nonlinear Potential Theory of Degenerate Elliptic Equations”, Dover Publications, 2006 (unabridged republication of 1993 edition, Oxford Universiy Press). | MR | Zbl
[23] P. Honzík and B. J. Jaye, On the good- inequality for nonlinear potentials, Proc. Amer. Math. Soc. 140 (2012), 4167–4180. | MR | Zbl
[24] B. J. Jaye, V. G. Maz’ya and I. E. Verbitsky, Existence and regularity of positive solutions of elliptic equations of Schrödinger type, J. Anal. Math. 118 (2012), 577–621. | MR
[25] B. J. Jaye and I. E. Verbitsky, Local and global behaviour of solutions to nonlinear equations with natural growth terms, Arch. Ration. Mech. Anal. 204 (2012), 627–681. | MR | Zbl
[26] P. Juutinen, P. Lindqvist and J. J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation, SIAM J. Math. Anal. 33 (2001), 699–717. | MR | Zbl
[27] J. Kazdan and R. Kramer, Invariant criteria for existence of second-order quasi-linear elliptic equations, Comm. Pure. Appl. Math. 31 (1978), 619–645. | MR | Zbl
[28] S. Kichenassamy and L. Véron, Singular solutions to the -Laplace equation, Math. Ann. 275 (1986), 599–615. | MR | Zbl | EuDML
[29] T. Kilpeläinen, Singular solutions of -Laplacian type equations, Ark. Mat. 37 (1999), 275–289. | MR | Zbl
[30] T. Kilpeläinen, -Laplacian type equations involving measures, In: “Proc. ICM”, Vol. III, Beijing, 2002, Higher Ed. Press, Beijing, 2002, 167–176. | MR | Zbl
[31] T. Kilpeläinen, T. Kuusi and A. Tuhola-Kujanpää, Superharmonic functions are locally renormalized solutions, Ann. Inst. Henri Poincaré, Anal. Non Linéare 28 (2011), 775–795. | MR | Zbl | mathdoc-id
[32] T. Kilpeläinen and J. Maly, Degenerate elliptic equations with measure data and nonlinear potentials, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19 (1992), 591–613. | MR | Zbl | EuDML | mathdoc-id
[33] T. Kilpeläinen and J. Maly, The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math. 172 (1994), 137–161. | MR | Zbl
[34] T. Kilpeläinen and X. Xu, On the uniqueness problem for quasilinear elliptic equations involving measures, Rev. Mat. Iberoamericana 12 (1996), 461–475. | MR | Zbl | EuDML
[35] D. Labutin, Isolated singularities of fully nonlinear elliptic equations, J. Differential Equations 177 (2001), 49–76. | MR | Zbl
[36] D. Labutin, Potential estimates for a class of fully nonlinear elliptic equations, Duke Math. J. 111 (2002), 1–49. | MR | Zbl
[37] J. Lewis and K. Nyström, Boundary behaviour for harmonic functions in Lipschitz and starlike Lipschitz ring domains, Ann. Sci. École Norm. Sup. 40 (2007), 765–813. | MR | Zbl | EuDML | mathdoc-id
[38] Y. Y. Li, Conformally invariant fully nonlinear elliptic equations and isolated singularities, J. Funct. Anal. 233 (2006), 380–425. | MR | Zbl
[39] J.-L. Lions, “Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires”, Dunod; Gauthier-Villars, Paris, 1969. | MR | Zbl
[40] V. Liskevich and I. I. Skrypnik, Isolated singularities of solutions to quasilinear elliptic equations, Potential Anal. 28 (2008), 1–16. | MR | Zbl
[41] W. Littman, G. Stampacchia and H. F. Weinberger, Regular points for elliptic equations with discontinuous coefficients. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 17 (1963), 43–77. | MR | Zbl | EuDML | mathdoc-id
[42] J. Maly and W. Ziemer, “Fine Regularity of Solutions of Elliptic Partial Differential Equations”, Math. Surveys and Monographs, Vol. 51, Amer. Math. Soc., Providence, RI, 1997. | MR | Zbl
[43] V. Maz’ya, The continuity at a boundary point of the solutions of quasi-linear elliptic equations, Vestnik Leningrad. Univ. 25 (1970), 42–55. | MR | Zbl
[44] V. Maz’ya, “Sobolev Spaces”, Springer Series in Soviet Math., Springer, 1985 (new edition in press). | MR
[45] G. Mingione, The Calderón-Zygmund theory for elliptic problems with measure data. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), 195–261. | MR | Zbl | EuDML | mathdoc-id
[46] F. Murat and A. Porretta, Stability properties, existence, and nonexistence of renormalized solutions for elliptic equations with measure data, Comm. Partial Differential Equations 27 (2002), 2267–2310. | MR | Zbl
[47] M. Murata, Structure of positive solutions to in , Duke Math. J. 53 (1986), 869–943. | MR | Zbl
[48] F. Nazarov, S. Treil and A. Volberg, The Bellman functions and two-weight inequalities for Haar multipliers, J. Amer. Math. Soc. 12 (1999), 909–928. | MR | Zbl
[49] F. Nicolosi, I.V. Skrypnik and I.I. Skrypnik, Precise point-wise growth conditions for removable isolated singularities, Comm. Partial Differential Equations 28 (2003), 677–696. | MR | Zbl
[50] N. C. Phuc and I. E. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type, Ann. of Math. (2) 168 (2008), 859–914. | MR | Zbl
[51] N. C. Phuc and I. E. Verbitsky, Singular quasilinear and Hessian equations and inequalities, J. Funct. Anal. 256 (2009), 1875–1905. | MR | Zbl
[52] Y. Pinchover, Topics in the theory of positive solutions of second-order elliptic and parabolic partial differential equations, In: “Spectral Theory and Math. Physics: a Festschrift in honor of Barry Simon’s 60th birthday”, Proc. Sympos. Pure Math. 76, Amer. Math. Soc. (2007), 329–355. | MR | Zbl
[53] Y. Pinchover and K. Tintarev, Ground state alternative for -Laplacian with potential term, Calc. Var. Partial Differential Equations 28 (2007), 179–201. | MR | Zbl
[54] H. L. Royden, The growth of a fundamental solution of an elliptic divergence structure equation, Studies in Math. Analysis and Related Topics, Stanford Univ. Press, Stanford, Calif. (1962), 333–340. | MR | Zbl
[55] J. Serrin, Local behavior of solutions to quasi-linear equations, Acta Math. 111 (1964), 247–301. | MR | Zbl
[56] J. Serrin, Isolated singularities of solutions to quasi-linear equations, Acta Math. 113 (1965), 219–240. | MR | Zbl
[57] J. Serrin and H. Zou, Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Acta Math. 189 (2002), 79–142. | MR | Zbl
[58] R. E. Showalter, “Monotone Operators in Banach Space and Nonlinear Partial Differential Equations”, Math. Surveys and Monographs, Vol. 49, Amer. Math. Soc., Providence, RI, 1997. | MR | Zbl
[59] N. Trudinger and X.-J. Wang, Hessian measures II, Ann. of Math. 150 (1999), 579–604. | MR | Zbl | EuDML
[60] N. Trudinger and X.-J. Wang Hessian measures III, J. Funct. Anal. 193 (2002), 1–23. | MR | Zbl
[61] N. Trudinger and X.-J. Wang, On the weak continuity of elliptic operators and applications to potential theory, Amer. J. Math. 124 (2002), 369–410. | MR | Zbl
[62] N. Trudinger and X.-J. Wang, Quasilinear elliptic equations with signed measure data, Discrete Contin. Dyn. Syst. 23 (2009), 477–494. | MR | Zbl
[63] I. E. Verbitsky, Green’s function estimates for some linear and nonlinear problems, In: “Proc. Indam School on symmetry for elliptic PDEs: 30 years after a conjecture of De Giorgi and related problems”, Rome, Italy, May 25–29, 2009, Contemp. Math., Amer. Math. Soc. (2010), 59–70. | MR | Zbl
[64] L. Véron, “Singularities of Solutions of Second-Order Quasilinear Equations”, Pitman Res. Notes Math., Vol. 353, Longman, Harlow, 1996. | MR | Zbl
[65] X.-J. Wang, “The -Hessian Equation”, Lecture Notes Math., Vol. 1977, Springer, Berlin, 2009. | Zbl