Voir la notice de l'article provenant de la source Numdam
We find bilateral global bounds for the fundamental solutions associated with some quasilinear and fully nonlinear operators perturbed by a nonnegative zero order term with natural growth under minimal assumptions. Important model problems involve the equations , for , and , for . Here and are the -Laplace and -Hessian operators respectively, and is an arbitrary positive measurable function (or measure). We will in addition consider the Sobolev regularity of the fundamental solution away from its pole.
Jaye, Benjamin J. 1 ; Verbitsky, Igor E. 1
@article{ASNSP_2013_5_12_1_93_0, author = {Jaye, Benjamin J. and Verbitsky, Igor E.}, title = {The fundamental solution of nonlinear equations with natural growth terms}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {93--139}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 12}, number = {1}, year = {2013}, mrnumber = {3088438}, zbl = {1278.35095}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2013_5_12_1_93_0/} }
TY - JOUR AU - Jaye, Benjamin J. AU - Verbitsky, Igor E. TI - The fundamental solution of nonlinear equations with natural growth terms JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2013 SP - 93 EP - 139 VL - 12 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2013_5_12_1_93_0/ LA - en ID - ASNSP_2013_5_12_1_93_0 ER -
%0 Journal Article %A Jaye, Benjamin J. %A Verbitsky, Igor E. %T The fundamental solution of nonlinear equations with natural growth terms %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2013 %P 93-139 %V 12 %N 1 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2013_5_12_1_93_0/ %G en %F ASNSP_2013_5_12_1_93_0
Jaye, Benjamin J.; Verbitsky, Igor E. The fundamental solution of nonlinear equations with natural growth terms. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 12 (2013) no. 1, pp. 93-139. http://geodesic.mathdoc.fr/item/ASNSP_2013_5_12_1_93_0/