Convergence in capacity on compact Kähler manifolds
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 11 (2012) no. 4, pp. 903-919.

Voir la notice de l'article provenant de la source Numdam

The aim of this note is to study the convergence in capacity for functions in the class (X,ø). We study the problem under several restrictions on the Monge-Ampère measures of the functions considered, such as common domination by a fixed measure or control on the variation.

Publié le :
Classification : 32W20, 32Q15

Dinew, Sławomir 1 ; Hiệp, Phạm Hoàng 2

1 Institute of Mathematics Jagiellonian University ul. Łojasiewicza 6 30-348 Kraków, Poland
2 Department of Mathematics University of Education (Dai hoc Su Pham Ha Noi) CauGiay, Hanoi, Vietnam
@article{ASNSP_2012_5_11_4_903_0,
     author = {Dinew, S{\l}awomir and Hiệp, Phạm Ho\`ang},
     title = {Convergence in capacity on compact {K\"ahler} manifolds},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {903--919},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 11},
     number = {4},
     year = {2012},
     zbl = {1268.32008},
     mrnumber = {3060705},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ASNSP_2012_5_11_4_903_0/}
}
TY  - JOUR
AU  - Dinew, Sławomir
AU  - Hiệp, Phạm Hoàng
TI  - Convergence in capacity on compact Kähler manifolds
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2012
SP  - 903
EP  - 919
VL  - 11
IS  - 4
PB  - Scuola Normale Superiore, Pisa
UR  - http://geodesic.mathdoc.fr/item/ASNSP_2012_5_11_4_903_0/
LA  - en
ID  - ASNSP_2012_5_11_4_903_0
ER  - 
%0 Journal Article
%A Dinew, Sławomir
%A Hiệp, Phạm Hoàng
%T Convergence in capacity on compact Kähler manifolds
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2012
%P 903-919
%V 11
%N 4
%I Scuola Normale Superiore, Pisa
%U http://geodesic.mathdoc.fr/item/ASNSP_2012_5_11_4_903_0/
%G en
%F ASNSP_2012_5_11_4_903_0
Dinew, Sławomir; Hiệp, Phạm Hoàng. Convergence in capacity on compact Kähler manifolds. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 11 (2012) no. 4, pp. 903-919. http://geodesic.mathdoc.fr/item/ASNSP_2012_5_11_4_903_0/

[1] S. Benelkourchi, V. Guedj and A. Zeriahi, A priori estimates for weak solutions of complex Monge-Ampère equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7 (2008), 81–96. | Zbl | EuDML | mathdoc-id | MR

[2] E. Bedford and B. A. Taylor, The Dirichlet problem for a complex Monge-Ampère operator, Invent. Math. 37 (1976), 1–44. | Zbl | EuDML | MR

[3] E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1–40. | Zbl | MR

[4] T. Bloom and N. Levenberg, Capacity convergence results and applications to a Bernstein-Markov inequality, Trans. Amer. Math. Soc. 351 (1999), 4753–4767. | Zbl | MR

[5] U. Cegrell, Pluricomplex energy, Acta Math. 180 (1998), 187–217. | Zbl | MR

[6] U. Cegrell, The general definition of the complex Monge-Ampère operator, Ann. Inst. Fourier Grenoble 54 (2004), 159–179. | Zbl | EuDML | mathdoc-id | MR

[7] U. Cegrell, Convergence in capacity, Technical report, Isaac Newton Institute for Mathematical Sciences, 2001 (arXiv: math/0505218). | Zbl

[8] U. Cegrell and S. Kołodziej, The Dirichlet problem for the complex Monge-Ampère operator: Perron classes and rotation invariant measures, Michigan Math. J. 41 (1994), 563–569. | Zbl | MR

[9] U. Cegrell and S. Kołodziej, Equation of complex Monge-Ampère type and stability of solutions, Math. Ann. 334 (2006), 713–729. | Zbl | MR

[10] S. Dinew, An inequality for mixed Monge-Ampère measures, Math. Z. 262 (2009), 1–15. | Zbl | MR

[11] S. Dinew, Uniqueness in (X,ø), J. Funct. Anal. 256 (2009), 2113–2122. | Zbl | MR

[12] V. Guedj and A. Zeriahi, Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal. 15 (2005), 607–639. | Zbl | MR

[13] V. Guedj and A. Zeriahi, The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal. 250 (2007), 442–482. | Zbl | MR

[14] P. H. Hiệp, On the convergence in capacity on compact Kähler manifolds and its applications, Proc. Amer. Math. Soc. 136 (2008), 2007–2018. | Zbl | MR

[15] P. H. Hiệp, Convergence in capacity, Ann. Polon. Math. 93 (2008), 91–99. | Zbl | EuDML | MR

[16] L. Hörmander, “Notions of Convexity”, Birkhäuser, Boston, 1994. | Zbl | MR

[17] N. V. Khue and P. H. Hiệp, A comparison principle for the complex Monge-Ampère operator in Cegrell’s classes and applications, Trans. Amer. Math. Soc. 361 (2009), 5539–5554. | Zbl | MR

[18] S. Kołodziej, The Monge-Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J. 52 (2003), 667–686. | Zbl | MR

[19] S. Kołodziej, The set of measures given by bounded solutions of the complex Monge-Ampère equation on compact Kähler manifolds, J. London Math. Soc. 124 (2005), 225–238. | Zbl | MR

[20] S. Kołodziej, The complex Monge-Ampère equation and pluripotential theory, Memoirs Amer. Math. Soc. 178/840 (2005), 1–64. | Zbl | MR

[21] Y. Xing, Continuity of the complex Monge-Ampère operator, Proc. Amer. Math. Soc. 124 (1996), 457–467. | Zbl | MR

[22] Y. Xing, Continuity of the complex Monge-Ampère operator on compact Kähler manifolds, Math. Z. 263 (2009), 331–344. | Zbl | MR