A note on quasilinear parabolic equations on manifolds
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 11 (2012) no. 4, pp. 857-874.

Voir la notice de l'article provenant de la source Numdam

We prove short time existence, uniqueness and continuous dependence on the initial data of smooth solutions of quasilinear locally parabolic equations of arbitrary even order on closed manifolds.

Publié le :
Classification : 35K59, 35K41, 35K52

Mantegazza, Carlo 1 ; Martinazzi, Luca 2

1 Scuola Normale Superiore Piazza dei Cavalieri 7 56126 Pisa, Italia
2 Centro di Ricerca Matematica “Ennio De Giorgi” Scuola Normale Superiore Piazza dei Cavalieri, 3 56126 Pisa, Italia
@article{ASNSP_2012_5_11_4_857_0,
     author = {Mantegazza, Carlo and Martinazzi, Luca},
     title = {A note on quasilinear parabolic equations on manifolds},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {857--874},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 11},
     number = {4},
     year = {2012},
     mrnumber = {3060703},
     zbl = {1272.35123},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ASNSP_2012_5_11_4_857_0/}
}
TY  - JOUR
AU  - Mantegazza, Carlo
AU  - Martinazzi, Luca
TI  - A note on quasilinear parabolic equations on manifolds
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2012
SP  - 857
EP  - 874
VL  - 11
IS  - 4
PB  - Scuola Normale Superiore, Pisa
UR  - http://geodesic.mathdoc.fr/item/ASNSP_2012_5_11_4_857_0/
LA  - en
ID  - ASNSP_2012_5_11_4_857_0
ER  - 
%0 Journal Article
%A Mantegazza, Carlo
%A Martinazzi, Luca
%T A note on quasilinear parabolic equations on manifolds
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2012
%P 857-874
%V 11
%N 4
%I Scuola Normale Superiore, Pisa
%U http://geodesic.mathdoc.fr/item/ASNSP_2012_5_11_4_857_0/
%G en
%F ASNSP_2012_5_11_4_857_0
Mantegazza, Carlo; Martinazzi, Luca. A note on quasilinear parabolic equations on manifolds. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 11 (2012) no. 4, pp. 857-874. http://geodesic.mathdoc.fr/item/ASNSP_2012_5_11_4_857_0/

[1] R. Adams, “Sobolev Spaces”, Academic Press, New York, 1975. | MR | Zbl

[2] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, Comm. Pure Appl. Math. 12 (1959), 623–727. | MR | Zbl

[3] T. Aubin, “Some Nonlinear Problems in Riemannian Geometry”, Springer-Verlag, 1998. | MR | Zbl

[4] S. Brendle, Convergence of the Yamabe flow for arbitrary initial energy, J. Differential Geom. 69 (2005), 217–278. | MR | Zbl

[5] M. Giaquinta and G. Modica, Local existence for quasilinear parabolic systems under nonlinear boundary conditions, Ann. Mat. Pura Appl. 149 (1987), 41–59. | MR | Zbl

[6] G. Huisken and A. Polden, Geometric Evolution Equations for Hypersurfaces, In: “Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996)”, Springer–Verlag, Berlin, 1999, 45–84. | MR | Zbl

[7] E. Kuwert and R. Schätzle, Gradient flow for the Willmore functional, Comm. Anal. Geom. 10 (2002), 307–339. | MR | Zbl

[8] J. L. Lions and E. Magenes, “Non-homogeneous Boundary Value Problems and Applications”, Vol. I, Springer-Verlag, New York, 1972. | MR | Zbl

[9] A. Malchiodi and M. Struwe, Q-curvature flow on 𝕊 4 , J. Differential Geom. 73 (2006), 1–44. | MR | Zbl

[10] A. Polden, Curves and Surfaces of Least Total Curvature and Fourth–Order Flows, P.h.D. thesis, Mathematisches Institut, Univ. Tübingen, 1996, Arbeitsbereich Analysis Preprint Server – Univ. Tübingen, http://poincare.mathematik.uni-tuebingen.de/mozilla/home.e.html.

[11] H. Schwetlick and M. Struwe, Convergence of the Yamabe flow for “large” energies, J. Reine Angew. Math. 562 (2003), 59–100. | MR | Zbl

[12] J. J. Sharples, Linear and quasilinear parabolic equations in Sobolev space, J. Differential Equations 202 (2004), 111–142. | MR | Zbl

[13] R. Ye, Global existence and convergence of Yamabe flow, J. Differential Geom. 39 (1994), 35–50. | MR | Zbl