Voir la notice de l'article provenant de la source Numdam
Special Legendrian Integral Cycles in are the links of the tangent cones to Special Lagrangian integer multiplicity rectifiable currents in Calabi-Yau 3-folds. We show that Special Legendrian Cycles are smooth except possibly at isolated points.
Bellettini, Costante 1 ; Rivière, Tristan 
@article{ASNSP_2012_5_11_1_61_0, author = {Bellettini, Costante and Rivi\`ere, Tristan}, title = {The regularity of {Special} {Legendrian} {Integral} {Cycles}}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {61--142}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 11}, number = {1}, year = {2012}, mrnumber = {2953045}, zbl = {1242.49093}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2012_5_11_1_61_0/} }
TY - JOUR AU - Bellettini, Costante AU - Rivière, Tristan TI - The regularity of Special Legendrian Integral Cycles JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2012 SP - 61 EP - 142 VL - 11 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2012_5_11_1_61_0/ LA - en ID - ASNSP_2012_5_11_1_61_0 ER -
%0 Journal Article %A Bellettini, Costante %A Rivière, Tristan %T The regularity of Special Legendrian Integral Cycles %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2012 %P 61-142 %V 11 %N 1 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2012_5_11_1_61_0/ %G en %F ASNSP_2012_5_11_1_61_0
Bellettini, Costante; Rivière, Tristan. The regularity of Special Legendrian Integral Cycles. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 11 (2012) no. 1, pp. 61-142. http://geodesic.mathdoc.fr/item/ASNSP_2012_5_11_1_61_0/
[1] Jr. Almgren and J. Frederick, “Almgren’s big Regularity Paper”, World Scientific Monograph Series in Mathematics, 1, “-valued Functions Minimizing Dirichlet’s Integral and the Regularity of Area-minimizing Rectifiable Currents up to Codimension 2”, with a preface by Jean E. Taylor and Vladimir Scheffer, World Scientific Publishing Co. Inc., River Edge, NJ, 2000, xvi+955. | MR | Zbl
[2] N. Aronszajn, A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl. (9) 36 (1957), 235–249. | MR | Zbl
[3] S. X.-D. Chang, Two-dimensional area minimizing integral currents are classical minimal surfaces, J. Amer. Math. Soc. 1 (1988), 699–778. | MR | Zbl
[4] C. De Lellis and E. Spadaro, “-Valued Functions Revisited”, Mem. Amer. Math. Soc., 211 (2011), n. 991, vi+79. | MR | Zbl
[5] S. K. Donaldson and R. P. Thomas, Gauge Theory in higher dimensions, In: “The Geometric Universe" (Oxford, 1996), Oxford Univ. Press, 1998, 31-47. | MR | Zbl
[6] L. C. Evans and R. F. Gariepy, “Measure Theory and Fine Properties of Functions”, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992, viii+268. | MR | Zbl
[7] H. Federer, “Geometric Measure Theory”, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969, xiv+676. | MR | Zbl
[8] M. Giaquinta, G. Modica and J. Souček, “Cartesian Currents in the Calculus of Variations. I”, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 37, Cartesian currents, Springer-Verlag, Berlin, 1998, xxiv+711. | MR | Zbl
[9] D. Gilbarg and N. S. Trudinger, “Elliptic Partial Differential Equations of Second Order”, Classics in Mathematics, Reprint of the 1998 edition, Springer-Verlag, Berlin, 2001, xiv+517. | MR | Zbl
[10] R. Harvey and H. B. Jr. Lawson, Calibrated geometries, Acta Math. 148 (1982), 47–157. | MR | Zbl
[11] M. Haskins, Special Lagrangian cones, Amer. J. Math. 126 (2004), 845–871. | MR | Zbl
[12] D. D. Joyce, “Riemannian Holonomy Groups and Calibrated Geometry”, Oxford Graduate Texts in Mathematics, 12, Oxford University Press, Oxford, 2007, x+303. | MR | Zbl
[13] M. J. Micallef and B. White, The structure of branch points in minimal surfaces and in pseudoholomorphic curves, Ann. of Math. (2) 141 (1995), 35–85. | MR | Zbl
[14] F. Morgan, “Geometric Measure Theory”, Fourth edition, A beginner’s guide, Elsevier/Academic Press, Amsterdam, 2009, viii+249. | MR | Zbl
[15] C. B. Jr. Morrey, “Multiple Integrals in the Calculus of Variations”, Die Grundlehren der mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York, 1966, ix+506. | MR | Zbl
[16] D. Pumberger and T. Rivière, Uniqueness of tangent cones for semi-calibrated 2-cycles, Duke Math. J. 152 (2010), 441–480. | MR | Zbl
[17] T. Rivière and G. Tian, The singular set of -holomorphic maps into projective algebraic varieties, J. Reine Angew. Math. 570 (2004), 47–87. 58J45. | MR | Zbl
[18] T. Rivière and G. Tian, The singular set of 1-1 integral currents, Ann. of Math. (2) 169 (2009), 741–794. | MR | Zbl
[19] L. Simon, “Lectures on Geometric Measure Theory”, Proceedings of the Centre for Mathematical Analysis, Australian National University, 3, Australian National University Centre for Mathematical Analysis, Canberra, 1983, vii+272. | MR | Zbl
[20] J. Simons, Minimal varieties in riemannian manifolds, Ann. of Math. (2) 88 (1968), 62–105. | MR | Zbl
[21] C. H. Taubes, “: From the Seiberg-Witten Equations to Pseudo-holomorphic Curves". Seiberg Witten and Gromov invariants for symplectic 4-manifolds., 1–102, First Int. Press Lect. Ser., 2, Int. Press, Somerville, MA, 2000. | MR | Zbl
[22] G. Tian, Gauge theory and calibrated geometry. I, Ann. of Math. (2) 151 (2000), 193–268. | MR | Zbl | EuDML
[23] B. White, Tangent cones to two-dimensional area-minimizing integral currents are unique, Duke Math. J. 50 (1983), 143–160. | MR | Zbl