Voir la notice de l'article provenant de la source Numdam
We study fully nonlinear elliptic equations such as
in or in exterior domains, where is any uniformly elliptic, positively homogeneous operator. We show that there exists a critical exponent, depending on the homogeneity of the fundamental solution of , that sharply characterizes the range of for which there exist positive supersolutions or solutions in any exterior domain. Our result generalizes theorems of Bidaut-Véron [6] as well as Cutri and Leoni [11], who found critical exponents for supersolutions in the whole space , in case is Laplace’s operator and Pucci’s operator, respectively. The arguments we present are new and rely only on the scaling properties of the equation and the maximum principle.
Armstrong, Scott N. 1 ; Sirakov, Boyan 2
@article{ASNSP_2011_5_10_3_729_0, author = {Armstrong, Scott N. and Sirakov, Boyan}, title = {Sharp {Liouville} results for fully nonlinear equations with power-growth nonlinearities}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {729--746}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 10}, number = {3}, year = {2011}, mrnumber = {2905384}, zbl = {1250.35050}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_3_729_0/} }
TY - JOUR AU - Armstrong, Scott N. AU - Sirakov, Boyan TI - Sharp Liouville results for fully nonlinear equations with power-growth nonlinearities JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2011 SP - 729 EP - 746 VL - 10 IS - 3 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_3_729_0/ LA - en ID - ASNSP_2011_5_10_3_729_0 ER -
%0 Journal Article %A Armstrong, Scott N. %A Sirakov, Boyan %T Sharp Liouville results for fully nonlinear equations with power-growth nonlinearities %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2011 %P 729-746 %V 10 %N 3 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_3_729_0/ %G en %F ASNSP_2011_5_10_3_729_0
Armstrong, Scott N.; Sirakov, Boyan. Sharp Liouville results for fully nonlinear equations with power-growth nonlinearities. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 3, pp. 729-746. http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_3_729_0/
[1] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), 620–709. | MR | Zbl
[2] S. N. Armstrong, Principal eigenvalues and an anti-maximum principle for homogeneous fully nonlinear elliptic equations, J. Differential Equations 246 (2009), 2958–2987. | MR | Zbl
[3] S. N. Armstrong, B. Sirakov and C. K. Smart, Fundamental solutions of homogeneous fully nonlinear elliptic equations, Comm. Pure Appl. Math. 64 (2011), 737–777. | MR | Zbl
[4] T. B. Benjamin, A unified theory of conjugate flows, Philos. Trans. Roy. Soc. London Ser. A 269 (1971), 587–643. | MR | Zbl
[5] M.-F. Bidaut-Véron and S. Pohozaev, Nonexistence results and estimates for some nonlinear elliptic problems, J. Anal. Math. 84 (2001), 1–49. | MR | Zbl
[6] M.-F. Bidaut-Véron, Local and global behavior of solutions of quasilinear equations of Emden-Fowler type, Arch. Rational Mech. Anal. 107 (1989), 293–324. | MR | Zbl
[7] X. Cabré, Elliptic PDE’s in probability and geometry: symmetry and regularity of solutions, Discrete Contin. Dyn. Syst. 20 (2008), 425–457. | MR | Zbl
[8] L. Caffarelli, M. G. Crandall, M. Kocan and A. Swiȩch, On viscosity solutions of fully nonlinear equations with measurable ingredients, Comm. Pure Appl. Math. 49 (1996), 365–397. | MR | Zbl
[9] L. A. Caffarelli and X. Cabré, “Fully Nonlinear Elliptic Equations”, Vol. 43 of American Mathematical Society Colloquium Publications, American Mathematical Society, Providence, RI, 1995. | MR | Zbl
[10] M. G. Crandall, Hitoshi Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1–67. | MR | Zbl
[11] A. Cutrì and F. Leoni, On the Liouville property for fully nonlinear equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000),219–245. | MR | Zbl | EuDML | mathdoc-id
[12] D. G. de Figueiredo, P.-L. Lions and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pures Appl. (9) 61 (1982), 41–63. | MR | Zbl
[13] P. L. Felmer and A. Quaas, On critical exponents for the Pucci’s extremal operators, Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003),843–865. | MR | Zbl | EuDML | mathdoc-id
[14] P. L. Felmer and A. Quaas, Fundamental solutions and two properties of elliptic maximal and minimal operators, Trans. Amer. Math. Soc. 361 (2009), 5721–5736. | MR | Zbl
[15] W. H. Fleming and H. M. Soner, “Controlled Markov Processes and Viscosity Solutions”, Vol. 25 of Stochastic Modelling and Applied Probability. Springer, New York, second edition, 2006. | MR | Zbl
[16] B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981), 525–598. | MR | Zbl
[17] B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations 6 (1981), 883–901. | MR | Zbl
[18] M. Guedda and L. Véron, Local and global properties of solutions of quasilinear elliptic equations, J. Differential Equations 76 (1988), 159–189. | MR | Zbl
[19] M. A. Krasnosel’skiǐ and P. P. Zabreǐko, “Geometrical Methods of Nonlinear Analysis”, Vol. 263 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1984. Translated from the Russian by Christian C. Fenske. | MR | Zbl
[20] N. V. Krylov, “Nonlinear Elliptic and Parabolic Equations of the Second Order”, Vol. 7 of Mathematics and its Applications (Soviet Series), D. Reidel Publishing Co., Dordrecht, 1987. | MR | Zbl
[21] D. A. Labutin, Isolated singularities for fully nonlinear elliptic equations, J. Differential Equations 177 (2001), 49–76. | MR | Zbl
[22] E. Mitidieri and S. I. Pokhozhaev, A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities, Tr. Mat. Inst. Steklova 234 (2001), 1–384. | MR | Zbl
[23] A. Quaas and B. Sirakov, Existence results for nonproper elliptic equations involving the Pucci operator, Comm. Partial Differential Equations 31 (2006), 987–1003. | MR | Zbl
[24] A. Quaas and B. Sirakov, Principal eigenvalues and the Dirichlet problem for fully nonlinear elliptic operators, Adv. Math. 218 (2008), 105–135. | MR | Zbl
[25] J. Serrin and H. Zou, Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Acta Math. 189 (2002), 79–142. | MR | Zbl