Markov uniqueness of degenerate elliptic operators
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 3, pp. 683-710

Voir la notice de l'article provenant de la source Numdam

Let Ω be an open subset of d and H Ω =- i,j=1 d i c ij j be a second-order partial differential operator on L 2 (Ω) with domain C c (Ω), where the coefficients c ij W 1, (Ω) are real symmetric and C=(c ij ) is a strictly positive-definite matrix over Ω. In particular, H Ω is locally strongly elliptic. We analyze the submarkovian extensions of H Ω , i.e., the self-adjoint extensions that generate submarkovian semigroups. Our main result states that H Ω is Markov unique, i.e., it has a unique submarkovian extension, if and only if cap Ω (Ω)=0 where cap Ω (Ω) is the capacity of the boundary of Ω measured with respect to H Ω . The second main result shows that Markov uniqueness of H Ω is equivalent to the semigroup generated by the Friedrichs extension of H Ω being conservative.

Publié le :
Classification : 47B25, 47D07, 35J70

Robinson, Derek W. 1 ; Sikora, Adam 2

1 Centre for Mathematics and its Applications Mathematical Sciences Institute Australian National University Canberra, ACT 0200, Australia
2 Department of Mathematics Macquarie University Sydney, NSW 2109, Australia
@article{ASNSP_2011_5_10_3_683_0,
     author = {Robinson, Derek W. and Sikora, Adam},
     title = {Markov uniqueness of degenerate elliptic operators},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {683--710},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 10},
     number = {3},
     year = {2011},
     mrnumber = {2905383},
     zbl = {1259.47026},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_3_683_0/}
}
TY  - JOUR
AU  - Robinson, Derek W.
AU  - Sikora, Adam
TI  - Markov uniqueness of degenerate elliptic operators
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2011
SP  - 683
EP  - 710
VL  - 10
IS  - 3
PB  - Scuola Normale Superiore, Pisa
UR  - http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_3_683_0/
LA  - en
ID  - ASNSP_2011_5_10_3_683_0
ER  - 
%0 Journal Article
%A Robinson, Derek W.
%A Sikora, Adam
%T Markov uniqueness of degenerate elliptic operators
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2011
%P 683-710
%V 10
%N 3
%I Scuola Normale Superiore, Pisa
%U http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_3_683_0/
%G en
%F ASNSP_2011_5_10_3_683_0
Robinson, Derek W.; Sikora, Adam. Markov uniqueness of degenerate elliptic operators. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 3, pp. 683-710. http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_3_683_0/