Voir la notice de l'article provenant de la source Numdam
In the present paper we establish the type estimates for the weak solutions of a class of degenerate elliptic equations. The optimal estimates are obtained by introducing the intrinsic metric that is associated with the geometry of the operator and then using the compactness method.
Song, Qiaozhen 1 ; Lu, Ying 2 ; Shen, Jianzhong 3 ; Wang, Lihe 4
@article{ASNSP_2011_5_10_3_645_0, author = {Song, Qiaozhen and Lu, Ying and Shen, Jianzhong and Wang, Lihe}, title = {Regularity of a class of degenerate elliptic equations}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {645--667}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 10}, number = {3}, year = {2011}, mrnumber = {2905381}, zbl = {1250.35115}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_3_645_0/} }
TY - JOUR AU - Song, Qiaozhen AU - Lu, Ying AU - Shen, Jianzhong AU - Wang, Lihe TI - Regularity of a class of degenerate elliptic equations JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2011 SP - 645 EP - 667 VL - 10 IS - 3 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_3_645_0/ LA - en ID - ASNSP_2011_5_10_3_645_0 ER -
%0 Journal Article %A Song, Qiaozhen %A Lu, Ying %A Shen, Jianzhong %A Wang, Lihe %T Regularity of a class of degenerate elliptic equations %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2011 %P 645-667 %V 10 %N 3 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_3_645_0/ %G en %F ASNSP_2011_5_10_3_645_0
Song, Qiaozhen; Lu, Ying; Shen, Jianzhong; Wang, Lihe. Regularity of a class of degenerate elliptic equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 3, pp. 645-667. http://geodesic.mathdoc.fr/item/ASNSP_2011_5_10_3_645_0/
[1] S. S. Byun and L. Wang, Elliptic equations with BMO coefficents in reifenberg domains, Comm. Pure Appl. Math. 57 (2004), 1283–1310. | MR | Zbl
[2] L. Capogna, D. Danielli and N. Garofalo, Subelliptic mollifiers and a basic pointwise estimate of Poincaré type, Math. Z. 226 (1997), 147–154. | MR | Zbl
[3] B. Franchi, Weighted Sobolev-Poincaré inequalities and pointwise estimates for a class of degenerate elliptic equations, Trans. Amer. Math. Soc. 327 (1991), 125–158. | MR | Zbl
[4] B. Franchi and E. Lanconelli, Hölder regularity theorem for a class of linear nonuniformly elliptic operator with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10 (1983), 523–541. | MR | Zbl | EuDML | mathdoc-id
[5] B. Franchi and R. Serapioni, Pointwise estimates for a class of strongly degenerate elliptic operators: a geometrical approach, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 14 (1987), 527–568. | MR | Zbl | EuDML | mathdoc-id
[6] N. Garofalo and D. M. Nhieu, Isoperimetric and the Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math. 49 (1996), 1081–1144. | MR | Zbl
[7] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. | MR | Zbl
[8] D. Jerison, The Poincaré inequality for vector fields satisfying Hörmander’s condition, Duke. Math. J. 53 (1986), 503–523. | MR | Zbl
[9] J. J. Kohn, Pseudo differential operators and Hypoellipticity, Proc. Symp. Pure Math. Amer. Math. Soc. 23 (1973), 61–69. | MR | Zbl
[10] E. Lanconelli and D. Morbidelli, On the Poincaré inequality for the vector fields, Ark. Mat. 38 (2000), 327–342. | MR | Zbl
[11] A. Loiudice, Sobolev inequalities with remainder terms for sublaplacians and other subelliptic operators, NoDEA Nonlinear Differential Equations Appl. 13 (2006), 119–136. | MR | Zbl
[12] L. P. Rothschild and E. M. Stein, Hypoelliptic differential operator and nilpotent groups, Acta Math. 137 (1977), 247–320. | MR | Zbl
[13] E. M. Stein, “Singular Integrals and Differentiability Properties of Functions", Princeton, 1970. | MR | Zbl
[14] L. Wang, Hölder estimates for subelliptic opertors, J. Funct. Anal. 199 (2003), 228–242. | MR | Zbl
[15] L. Wang, A geometric approach to the Calderón-Zygmund estimates, Acta Math. Sin. (Engl. Ser.) 19 (2003), 381–396. | MR | Zbl