Regularizing and self-avoidance effects of integral Menger curvature
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 9 (2010) no. 1, pp. 145-187.

Voir la notice de l'article provenant de la source Numdam

We investigate geometric curvature energies on closed curves involving integral versions of the Menger curvature. In particular, we prove geometric variants of Morrey-Sobolev and Morrey-space imbedding theorems, which may be viewed as counterparts to respective results on one-dimensional sets in the context of harmonic analysis.

Classification : 28A75, 53A04, 46E35

Strzelecki, Paweł 1 ; Szumańska, Marta 2 ; von der Mosel, Heiko 3

1 Instytut Matematyki, Uniwersytet Warszawski, ul. Banacha 2, PL-02-097 Warsaw, Poland
2 Instytut Matematyczny, Polskiej Akademii Nauk, ul. Śniadeckich 8, PL-00-950 Warsaw, Poland
3 Institut für Mathematik, RWTH Aachen University, Templergraben 55, D–52062 Aachen, Germany
@article{ASNSP_2010_5_9_1_145_0,
     author = {Strzelecki, Pawe{\l} and Szuma\'nska, Marta and von der Mosel, Heiko},
     title = {Regularizing and self-avoidance effects of integral {Menger} curvature},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {145--187},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 9},
     number = {1},
     year = {2010},
     mrnumber = {2668877},
     zbl = {1193.28007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ASNSP_2010_5_9_1_145_0/}
}
TY  - JOUR
AU  - Strzelecki, Paweł
AU  - Szumańska, Marta
AU  - von der Mosel, Heiko
TI  - Regularizing and self-avoidance effects of integral Menger curvature
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2010
SP  - 145
EP  - 187
VL  - 9
IS  - 1
PB  - Scuola Normale Superiore, Pisa
UR  - http://geodesic.mathdoc.fr/item/ASNSP_2010_5_9_1_145_0/
LA  - en
ID  - ASNSP_2010_5_9_1_145_0
ER  - 
%0 Journal Article
%A Strzelecki, Paweł
%A Szumańska, Marta
%A von der Mosel, Heiko
%T Regularizing and self-avoidance effects of integral Menger curvature
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2010
%P 145-187
%V 9
%N 1
%I Scuola Normale Superiore, Pisa
%U http://geodesic.mathdoc.fr/item/ASNSP_2010_5_9_1_145_0/
%G en
%F ASNSP_2010_5_9_1_145_0
Strzelecki, Paweł; Szumańska, Marta; von der Mosel, Heiko. Regularizing and self-avoidance effects of integral Menger curvature. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 9 (2010) no. 1, pp. 145-187. http://geodesic.mathdoc.fr/item/ASNSP_2010_5_9_1_145_0/

[1] T. Ashton, J. Cantarella, M. Piatek and E. Rawdon, Self-contact sets for 50 tightly knotted and linked tubes, arXiv:math.DG/0508248 v1 (2005).

[2] J. R. Banavar, O. Gonzalez, J. H. Maddocks and A. Maritan, Self-interactions of strands and sheets, J. Stat. Phys. 110 (2003), 35–50. | MR | Zbl

[3] L. M. Blumenthal and K. Menger, “Studies in Geometry”, Freeman and co., San Francisco, CA, 1970. | MR | Zbl

[4] J. Cantarella, J. H. G. Fu, R. B. Kusner, J. M. Sullivan and N. C. Wrinkle, Criticality for the Gehring link problem, Geom. Topol. 10 (2006), 2055–2116. | MR | Zbl

[5] J. Cantarella, R. B. Kusner and J. M. Sullivan, On the minimum ropelength of knots and links, Invent. Math. 150 (2002), 257–286. | MR | Zbl

[6] J. Cantarella, M. Piatek and E. Rawdon, Visualizing the tightening of knots, In: “VIS’05: Proc. of the 16th IEEE Visualization 2005”, IEEE Computer Society, Washington, DC, 2005, 575–582.

[7] M. Carlen, B. Laurie, J. H. Maddocks and J. Smutny, Biarcs, global radius of curvature, and the computation of ideal knot shapes, In: “Physical and Numerical Models in Knot Theory”, J. A. Calvo, K. C. Millett, E. J. Rawdon, A. Stasiak (eds.) Ser. on Knots and Everything 36, World Scientific, Singapore, 2005, 75–108. | MR | Zbl

[8] R. H. Crowell and R. H. Fox, “Introduction to Knot Theory”, Springer, New York, 1977. (Reprint of the 1963 original, Graduate Texts in Mathematics, Vol. 57.) | MR | Zbl

[9] G. David and S. Semmes, “Singular Integrals and Rectifiable Sets in n : Au-delà des graphes lipschitziens”, Astériques 193, Soc. Mathématique France, Montrouge, 1991. | Zbl | mathdoc-id

[10] M. H. Freedman, Z.-X. He and Z. Wang, Möbius energy of knots and unknots, Ann. of Math. 139 (1994), 1–50. | MR | Zbl

[11] H. Gerlach and J. H. Maddocks, Existence of ideal knots in § 3 , in preparation.

[12] H. Gerlach and H. Von Der Mosel, What are the longest ropes on the unit sphere? Preprint Nr. 32, Institut für Mathematik, RWTH Aachen University (2009); see http://www.instmath.rwth-aachen.de/~heiko/veroeffentlichungen/longest_ropes.pdf. | MR | Zbl

[13] O. Gonzalez and R. De La Llave, Existence of ideal knots, J. Knot Theory Ramifications 12 (2003), 123–133. | MR | Zbl

[14] O. Gonzalez and J. H. Maddocks, Global curvature, thickness, and the ideal shape of knots, Proc. Natl. Acad. Sci. USA 96 (1999), 4769–4773. | MR | Zbl

[15] O. Gonzalez, J. H. Maddocks, F. Schuricht and H. Von Der Mosel, Global curvature and self-contact of nonlinearly elastic curves and rods, Calc. Var. Partial Differential Equations 14 (2002), 29–68. | MR | Zbl

[16] I. Hahlomaa, Menger curvature and Lipschitz parametrizations in metric spaces, Fund. Math. 185 (2005), 143–169. | MR | EuDML | Zbl

[17] I. Hahlomaa, Curvature integral and Lipschitz parametrization in 1-regular metric spaces, Ann. Acad. Sci. Fenn. Math. 32 (2007), 99–123. | MR | EuDML | Zbl

[18] J. C. Léger, Menger curvature and rectifiability, Ann. of Math. 149 (1999), 831–869. | MR | EuDML | Zbl

[19] G. Lerman and J. T. Whitehouse, High-dimensional Menger-type curvatures – Part I: Geometric multipoles and multiscale inequalities, arXiv:0805.1425v1 (2008), to appear in Rev. Mat. Iberoamericana. | MR | Zbl

[20] G. Lerman and J. T. Whitehouse, High-dimensional Menger-type curvatures – Part II: d-Separation and a menagerie of curvatures, Constr. Approx. 30 (2009), 325–360. | MR | Zbl

[21] Y. Lin and P. Mattila, Menger curvature and C 1 -regularity of fractals, Proc. Amer. Math. Soc. 129 (2000), 1755–1762. | MR | Zbl

[22] P. Mattila, Rectifiability, analytic capacity, and singular integrals, In: “Proc. ICM”, Vol. II, Berlin 1998, Doc. Math. 1998, Extra Vol. II, 657–664 (electronic). | MR | EuDML | Zbl

[23] P. Mattila, Search for geometric criteria for removable sets of bounded analytic functions, Cubo 6 (2004), 113–132. | MR | Zbl

[24] M. Melnikov, Analytic capacity: discrete approach and curvature of measure, Sb. Mat. 186 (1995), 827–846. | Zbl

[25] M. Melnikov and J. Verdera, A geometric proof of the L 2 boundedness of the Cauchy integral on Lipschitz curves, Int. Math. Res. Not. 7 (1995), 325–331. | MR | Zbl

[26] K. Menger, Untersuchungen über allgemeine Metrik. Vierte Untersuchung, Zur Metrik der Kurven, Math. Ann. 103 (1930), 466–501. | MR | EuDML | JFM

[27] H. Pajot, “Analytic Capacity, Rectifiability, Menger Curvature and the Cauchy Integral”, Springer Lecture Notes, Vol. 1799, Springer Berlin, Heidelberg, New York, 2002. | MR | Zbl

[28] R. Schul, Ahlfors-regular curves in metric spaces, Ann. Acad. Sci. Fenn. Math. 32 (2007), 437–460. | MR | Zbl

[29] F. Schuricht and H. Von Der Mosel, Global curvature for rectifiable loops, Math. Z. 243 (2003), 37–77. | MR | Zbl

[30] F. Schuricht and H. Von Der Mosel, Euler-Lagrange equations for nonlinearly elastic rods with self-contact, Arch. Ration. Mech. Anal. 168 (2003), 35–82. | MR | Zbl

[31] F. Schuricht and H. Von Der Mosel, Characterization of ideal knots, Calc. Var. Partial Differential Equations 19 (2004), 281–305. | MR | Zbl

[32] P. Strzelecki, M. Szumańska and H. Von Der Mosel, A geometric curvature double integral of Menger type for space curves Ann. Acad. Sci. Fenn. Math. 34 (2009), 195–214. | MR | Zbl

[33] P. Strzelecki and H. Von Der Mosel, On a mathematical model for thick surfaces, In: “Physical and Numerical Models in Knot Theory”, J. A. Calvo, K. C. Millett, E. J. Rawdon, A. Stasiak (eds.), Ser. on Knots and Everything 36, World Scientific, Singapore, 2005, 547–564. | MR | Zbl

[34] P. Strzelecki and H. Von Der Mosel, Global curvature for surfaces and area minimization under a thickness constraint, Calc. Var. Partial Differential Equations 25 (2006), 431–467. | MR | Zbl

[35] P. Strzelecki and H. Von Der Mosel, On rectifiable curves with L p -bounds on global curvature: Self-avoidance, regularity, and minimizing knots, Math. Z. 257 (2007), 107–130. | MR | Zbl

[36] P. Strzelecki and H. Von Der Mosel, Integral Menger curvature for surfaces, arXiv:math.CA/0911.2095 v2 (2009). | MR | Zbl

[37] J. Verdera, The L 2 boundedness of the Cauchy integral and Menger curvature, In: “Harmonic Analysis and Boundary Value Problems”, Contemp. Math. 277, AMS, Providence, RI, 2001, 139–158. | MR | Zbl