Voir la notice de l'article provenant de la source Numdam
We investigate geometric curvature energies on closed curves involving integral versions of the Menger curvature. In particular, we prove geometric variants of Morrey-Sobolev and Morrey-space imbedding theorems, which may be viewed as counterparts to respective results on one-dimensional sets in the context of harmonic analysis.
Strzelecki, Paweł 1 ; Szumańska, Marta 2 ; von der Mosel, Heiko 3
@article{ASNSP_2010_5_9_1_145_0, author = {Strzelecki, Pawe{\l} and Szuma\'nska, Marta and von der Mosel, Heiko}, title = {Regularizing and self-avoidance effects of integral {Menger} curvature}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {145--187}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 9}, number = {1}, year = {2010}, mrnumber = {2668877}, zbl = {1193.28007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2010_5_9_1_145_0/} }
TY - JOUR AU - Strzelecki, Paweł AU - Szumańska, Marta AU - von der Mosel, Heiko TI - Regularizing and self-avoidance effects of integral Menger curvature JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2010 SP - 145 EP - 187 VL - 9 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2010_5_9_1_145_0/ LA - en ID - ASNSP_2010_5_9_1_145_0 ER -
%0 Journal Article %A Strzelecki, Paweł %A Szumańska, Marta %A von der Mosel, Heiko %T Regularizing and self-avoidance effects of integral Menger curvature %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2010 %P 145-187 %V 9 %N 1 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2010_5_9_1_145_0/ %G en %F ASNSP_2010_5_9_1_145_0
Strzelecki, Paweł; Szumańska, Marta; von der Mosel, Heiko. Regularizing and self-avoidance effects of integral Menger curvature. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 9 (2010) no. 1, pp. 145-187. http://geodesic.mathdoc.fr/item/ASNSP_2010_5_9_1_145_0/
[1] Self-contact sets for 50 tightly knotted and linked tubes, arXiv:math.DG/0508248 v1 (2005).
, , and ,[2] Self-interactions of strands and sheets, J. Stat. Phys. 110 (2003), 35–50. | MR | Zbl
, , and ,[3] “Studies in Geometry”, Freeman and co., San Francisco, CA, 1970. | MR | Zbl
and ,[4] Criticality for the Gehring link problem, Geom. Topol. 10 (2006), 2055–2116. | MR | Zbl
, , , and ,[5] On the minimum ropelength of knots and links, Invent. Math. 150 (2002), 257–286. | MR | Zbl
, and ,[6] Visualizing the tightening of knots, In: “VIS’05: Proc. of the 16th IEEE Visualization 2005”, IEEE Computer Society, Washington, DC, 2005, 575–582.
, and ,[7] Biarcs, global radius of curvature, and the computation of ideal knot shapes, In: “Physical and Numerical Models in Knot Theory”, J. A. Calvo, K. C. Millett, E. J. Rawdon, A. Stasiak (eds.) Ser. on Knots and Everything 36, World Scientific, Singapore, 2005, 75–108. | MR | Zbl
, , and ,[8] “Introduction to Knot Theory”, Springer, New York, 1977. (Reprint of the 1963 original, Graduate Texts in Mathematics, Vol. 57.) | MR | Zbl
and ,[9] “Singular Integrals and Rectifiable Sets in : Au-delà des graphes lipschitziens”, Astériques 193, Soc. Mathématique France, Montrouge, 1991. | Zbl | mathdoc-id
and ,[10] Möbius energy of knots and unknots, Ann. of Math. 139 (1994), 1–50. | MR | Zbl
, and ,[11] Existence of ideal knots in , in preparation.
and ,[12] What are the longest ropes on the unit sphere? Preprint Nr. 32, Institut für Mathematik, RWTH Aachen University (2009); see http://www.instmath.rwth-aachen.de/~heiko/veroeffentlichungen/longest_ropes.pdf. | MR | Zbl
and ,[13] Existence of ideal knots, J. Knot Theory Ramifications 12 (2003), 123–133. | MR | Zbl
and ,[14] Global curvature, thickness, and the ideal shape of knots, Proc. Natl. Acad. Sci. USA 96 (1999), 4769–4773. | MR | Zbl
and ,[15] Global curvature and self-contact of nonlinearly elastic curves and rods, Calc. Var. Partial Differential Equations 14 (2002), 29–68. | MR | Zbl
, , and ,[16] Menger curvature and Lipschitz parametrizations in metric spaces, Fund. Math. 185 (2005), 143–169. | MR | EuDML | Zbl
,[17] Curvature integral and Lipschitz parametrization in -regular metric spaces, Ann. Acad. Sci. Fenn. Math. 32 (2007), 99–123. | MR | EuDML | Zbl
,[18] Menger curvature and rectifiability, Ann. of Math. 149 (1999), 831–869. | MR | EuDML | Zbl
,[19] High-dimensional Menger-type curvatures – Part I: Geometric multipoles and multiscale inequalities, arXiv:0805.1425v1 (2008), to appear in Rev. Mat. Iberoamericana. | MR | Zbl
and ,[20] High-dimensional Menger-type curvatures – Part II: -Separation and a menagerie of curvatures, Constr. Approx. 30 (2009), 325–360. | MR | Zbl
and ,[21] Menger curvature and -regularity of fractals, Proc. Amer. Math. Soc. 129 (2000), 1755–1762. | MR | Zbl
and ,[22] Rectifiability, analytic capacity, and singular integrals, In: “Proc. ICM”, Vol. II, Berlin 1998, Doc. Math. 1998, Extra Vol. II, 657–664 (electronic). | MR | EuDML | Zbl
,[23] Search for geometric criteria for removable sets of bounded analytic functions, Cubo 6 (2004), 113–132. | MR | Zbl
,[24] Analytic capacity: discrete approach and curvature of measure, Sb. Mat. 186 (1995), 827–846. | Zbl
,[25] A geometric proof of the boundedness of the Cauchy integral on Lipschitz curves, Int. Math. Res. Not. 7 (1995), 325–331. | MR | Zbl
and ,[26] Untersuchungen über allgemeine Metrik. Vierte Untersuchung, Zur Metrik der Kurven, Math. Ann. 103 (1930), 466–501. | MR | EuDML | JFM
,[27] “Analytic Capacity, Rectifiability, Menger Curvature and the Cauchy Integral”, Springer Lecture Notes, Vol. 1799, Springer Berlin, Heidelberg, New York, 2002. | MR | Zbl
,[28] Ahlfors-regular curves in metric spaces, Ann. Acad. Sci. Fenn. Math. 32 (2007), 437–460. | MR | Zbl
,[29] Global curvature for rectifiable loops, Math. Z. 243 (2003), 37–77. | MR | Zbl
and ,[30] Euler-Lagrange equations for nonlinearly elastic rods with self-contact, Arch. Ration. Mech. Anal. 168 (2003), 35–82. | MR | Zbl
and ,[31] Characterization of ideal knots, Calc. Var. Partial Differential Equations 19 (2004), 281–305. | MR | Zbl
and ,[32] A geometric curvature double integral of Menger type for space curves Ann. Acad. Sci. Fenn. Math. 34 (2009), 195–214. | MR | Zbl
, and ,[33] On a mathematical model for thick surfaces, In: “Physical and Numerical Models in Knot Theory”, J. A. Calvo, K. C. Millett, E. J. Rawdon, A. Stasiak (eds.), Ser. on Knots and Everything 36, World Scientific, Singapore, 2005, 547–564. | MR | Zbl
and ,[34] Global curvature for surfaces and area minimization under a thickness constraint, Calc. Var. Partial Differential Equations 25 (2006), 431–467. | MR | Zbl
and ,[35] On rectifiable curves with -bounds on global curvature: Self-avoidance, regularity, and minimizing knots, Math. Z. 257 (2007), 107–130. | MR | Zbl
and ,[36] Integral Menger curvature for surfaces, arXiv:math.CA/0911.2095 v2 (2009). | MR | Zbl
and ,[37] The boundedness of the Cauchy integral and Menger curvature, In: “Harmonic Analysis and Boundary Value Problems”, Contemp. Math. 277, AMS, Providence, RI, 2001, 139–158. | MR | Zbl
,