Second variational derivative of local variational problems and conservation laws
Archivum mathematicum, Tome 47 (2011) no. 5, pp. 395-403.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider cohomology defined by a system of local Lagrangian and investigate under which conditions the variational Lie derivative of associated local currents is a system of conserved currents. The answer to such a question involves Jacobi equations for the local system. Furthermore, we recall that it was shown by Krupka et al. that the invariance of a closed Helmholtz form of a dynamical form is equivalent with local variationality of the Lie derivative of the dynamical form; we remark that the corresponding local system of Euler–Lagrange forms is variationally equivalent to a global one.
Classification : 55N30, 55R10, 58A12, 58A20, 58E30, 70S10
Keywords: fibered manifold; jet space; Lagrangian formalism; variational sequence; second variational derivative; cohomology; symmetry; conservation law
@article{ARM_2011__47_5_a6,
     author = {Palese, Marcella and Winterroth, Ekkehart and Garrone, E.},
     title = {Second variational derivative of local variational problems and conservation laws},
     journal = {Archivum mathematicum},
     pages = {395--403},
     publisher = {mathdoc},
     volume = {47},
     number = {5},
     year = {2011},
     mrnumber = {2876943},
     zbl = {1265.58008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2011__47_5_a6/}
}
TY  - JOUR
AU  - Palese, Marcella
AU  - Winterroth, Ekkehart
AU  - Garrone, E.
TI  - Second variational derivative of local variational problems and conservation laws
JO  - Archivum mathematicum
PY  - 2011
SP  - 395
EP  - 403
VL  - 47
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2011__47_5_a6/
LA  - en
ID  - ARM_2011__47_5_a6
ER  - 
%0 Journal Article
%A Palese, Marcella
%A Winterroth, Ekkehart
%A Garrone, E.
%T Second variational derivative of local variational problems and conservation laws
%J Archivum mathematicum
%D 2011
%P 395-403
%V 47
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2011__47_5_a6/
%G en
%F ARM_2011__47_5_a6
Palese, Marcella; Winterroth, Ekkehart; Garrone, E. Second variational derivative of local variational problems and conservation laws. Archivum mathematicum, Tome 47 (2011) no. 5, pp. 395-403. http://geodesic.mathdoc.fr/item/ARM_2011__47_5_a6/