Conformally geodesic mappings satisfying a certain initial condition
Archivum mathematicum, Tome 47 (2011) no. 5, pp. 389-394
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we study conformally geodesic mappings between pseudo-Riemannian manifolds $(M, g)$ and $(\bar{M}, \bar{g})$, i.e. mappings $f\colon M \rightarrow \bar{M}$ satisfying $f = f_1 \circ f_2 \circ f_3$, where $f_1, f_3$ are conformal mappings and $f_2$ is a geodesic mapping. Suppose that the initial condition $f^* \bar{g} = k g$ is satisfied at a point $x_0 \in M$ and that at this point the conformal Weyl tensor does not vanish. We prove that then $f$ is necessarily conformal.
Classification :
53B20, 53B30, 53C21
Keywords: conformal mappings; geodesic mappings; conformally geodesic mappings
Keywords: conformal mappings; geodesic mappings; conformally geodesic mappings
@article{ARM_2011__47_5_a5,
author = {Chud\'a, Hana and Mike\v{s}, Josef},
title = {Conformally geodesic mappings satisfying a certain initial condition},
journal = {Archivum mathematicum},
pages = {389--394},
publisher = {mathdoc},
volume = {47},
number = {5},
year = {2011},
mrnumber = {2876942},
zbl = {1265.53019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2011__47_5_a5/}
}
Chudá, Hana; Mikeš, Josef. Conformally geodesic mappings satisfying a certain initial condition. Archivum mathematicum, Tome 47 (2011) no. 5, pp. 389-394. http://geodesic.mathdoc.fr/item/ARM_2011__47_5_a5/