Noether’s theorem for a fixed region
Archivum mathematicum, Tome 47 (2011) no. 5, pp. 337-356.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We give an elementary proof of Noether's first Theorem while stressing the magical fact that the global quasi-symmetry only needs to hold for one fixed integration region. We provide sufficient conditions for gauging a global quasi-symmetry.
Classification : 70H33, 70S10
Keywords: Noether’s first Theorem
@article{ARM_2011__47_5_a1,
     author = {Bering, Klaus},
     title = {Noether{\textquoteright}s theorem for a fixed region},
     journal = {Archivum mathematicum},
     pages = {337--356},
     publisher = {mathdoc},
     volume = {47},
     number = {5},
     year = {2011},
     mrnumber = {2876938},
     zbl = {1265.70033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2011__47_5_a1/}
}
TY  - JOUR
AU  - Bering, Klaus
TI  - Noether’s theorem for a fixed region
JO  - Archivum mathematicum
PY  - 2011
SP  - 337
EP  - 356
VL  - 47
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2011__47_5_a1/
LA  - en
ID  - ARM_2011__47_5_a1
ER  - 
%0 Journal Article
%A Bering, Klaus
%T Noether’s theorem for a fixed region
%J Archivum mathematicum
%D 2011
%P 337-356
%V 47
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2011__47_5_a1/
%G en
%F ARM_2011__47_5_a1
Bering, Klaus. Noether’s theorem for a fixed region. Archivum mathematicum, Tome 47 (2011) no. 5, pp. 337-356. http://geodesic.mathdoc.fr/item/ARM_2011__47_5_a1/