Ellipticity of the symplectic twistor complex
Archivum mathematicum, Tome 47 (2011) no. 4, pp. 309-327.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For a Fedosov manifold (symplectic manifold equipped with a symplectic torsion-free affine connection) admitting a metaplectic structure, we shall investigate two sequences of first order differential operators acting on sections of certain infinite rank vector bundles defined over this manifold. The differential operators are symplectic analogues of the twistor operators known from Riemannian or Lorentzian spin geometry. It is known that the mentioned sequences form complexes if the symplectic connection is of Ricci type. In this paper, we prove that certain parts of these complexes are elliptic.
Classification : 22E46, 53C07, 53C80, 58J05
Keywords: Fedosov manifolds; Segal-Shale-Weil representation; Kostant’s spinors; elliptic complexes
@article{ARM_2011__47_4_a6,
     author = {Kr\'ysl, Svatopluk},
     title = {Ellipticity of the symplectic twistor complex},
     journal = {Archivum mathematicum},
     pages = {309--327},
     publisher = {mathdoc},
     volume = {47},
     number = {4},
     year = {2011},
     mrnumber = {2876952},
     zbl = {1249.22009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2011__47_4_a6/}
}
TY  - JOUR
AU  - Krýsl, Svatopluk
TI  - Ellipticity of the symplectic twistor complex
JO  - Archivum mathematicum
PY  - 2011
SP  - 309
EP  - 327
VL  - 47
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2011__47_4_a6/
LA  - en
ID  - ARM_2011__47_4_a6
ER  - 
%0 Journal Article
%A Krýsl, Svatopluk
%T Ellipticity of the symplectic twistor complex
%J Archivum mathematicum
%D 2011
%P 309-327
%V 47
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2011__47_4_a6/
%G en
%F ARM_2011__47_4_a6
Krýsl, Svatopluk. Ellipticity of the symplectic twistor complex. Archivum mathematicum, Tome 47 (2011) no. 4, pp. 309-327. http://geodesic.mathdoc.fr/item/ARM_2011__47_4_a6/