Periodic solutions for $n$-th order delay differential equations with damping terms
Archivum mathematicum, Tome 47 (2011) no. 4, pp. 263-278.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

By using the coincidence degree theory of Mawhin, we study the existence of periodic solutions for $n$ th order delay differential equations with damping terms $x^{(n)}(t)=\sum \limits ^{s}_{i=1}b_{i}[x^{(i)}(t)]^{2k-1}+ f(x(t-\tau (t)))+p(t)$. Some new results on the existence of periodic solutions of the investigated equation are obtained.
Classification : 34C25
Keywords: delay differential equations; periodic solution; coincidence degree
@article{ARM_2011__47_4_a3,
     author = {Pan, Lijun},
     title = {Periodic solutions for $n$-th order delay differential equations with damping terms},
     journal = {Archivum mathematicum},
     pages = {263--278},
     publisher = {mathdoc},
     volume = {47},
     number = {4},
     year = {2011},
     mrnumber = {2876949},
     zbl = {1249.34206},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2011__47_4_a3/}
}
TY  - JOUR
AU  - Pan, Lijun
TI  - Periodic solutions for $n$-th order delay differential equations with damping terms
JO  - Archivum mathematicum
PY  - 2011
SP  - 263
EP  - 278
VL  - 47
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2011__47_4_a3/
LA  - en
ID  - ARM_2011__47_4_a3
ER  - 
%0 Journal Article
%A Pan, Lijun
%T Periodic solutions for $n$-th order delay differential equations with damping terms
%J Archivum mathematicum
%D 2011
%P 263-278
%V 47
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2011__47_4_a3/
%G en
%F ARM_2011__47_4_a3
Pan, Lijun. Periodic solutions for $n$-th order delay differential equations with damping terms. Archivum mathematicum, Tome 47 (2011) no. 4, pp. 263-278. http://geodesic.mathdoc.fr/item/ARM_2011__47_4_a3/