On local isometric immersions into complex and quaternionic projective spaces
Archivum mathematicum, Tome 47 (2011) no. 4, pp. 251-256.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We will prove that if an open subset of $\mathbb{C}{}P^{n}$ is isometrically immersed into $\mathbb{C}{}P^{m}$, with $m(4/3)n-2/3$, then the image is totally geodesic. We will also prove that if an open subset of $\mathbb{H}{}P^{n}$ isometrically immersed into $\mathbb{H}{}P^{m}$, with $m(4/3)n-5/6$, then the image is totally geodesic.
Classification : 53C40
Keywords: submanifolds; homogeneous spaces; symmetric spaces
@article{ARM_2011__47_4_a1,
     author = {Rivertz, Hans Jakob},
     title = {On local isometric immersions into complex and quaternionic projective spaces},
     journal = {Archivum mathematicum},
     pages = {251--256},
     publisher = {mathdoc},
     volume = {47},
     number = {4},
     year = {2011},
     mrnumber = {2876947},
     zbl = {1249.53079},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2011__47_4_a1/}
}
TY  - JOUR
AU  - Rivertz, Hans Jakob
TI  - On local isometric immersions into complex and quaternionic projective spaces
JO  - Archivum mathematicum
PY  - 2011
SP  - 251
EP  - 256
VL  - 47
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2011__47_4_a1/
LA  - en
ID  - ARM_2011__47_4_a1
ER  - 
%0 Journal Article
%A Rivertz, Hans Jakob
%T On local isometric immersions into complex and quaternionic projective spaces
%J Archivum mathematicum
%D 2011
%P 251-256
%V 47
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2011__47_4_a1/
%G en
%F ARM_2011__47_4_a1
Rivertz, Hans Jakob. On local isometric immersions into complex and quaternionic projective spaces. Archivum mathematicum, Tome 47 (2011) no. 4, pp. 251-256. http://geodesic.mathdoc.fr/item/ARM_2011__47_4_a1/