Hilbert inequality for vector valued functions
Archivum mathematicum, Tome 47 (2011) no. 3, pp. 229-243.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we consider a class of Hankel operators with operator valued symbols on the Hardy space ${ \mathcal{H}}_{\Xi }^2(\mathbb{T})$ where $\Xi $ is a separable infinite dimensional Hilbert space and showed that these operators are unitarily equivalent to a class of integral operators in $L^2(0, \infty )\otimes \Xi .$ We then obtained a generalization of Hilbert inequality for vector valued functions. In the continuous case the corresponding integral operator has matrix valued kernels and in the discrete case the sum involves inner product of vectors in the Hilbert space $\Xi $.
Classification : 26D15
Keywords: Hardy-Hilbert’s integral inequality; $\beta $-function; Hölder’s inequality
@article{ARM_2011__47_3_a4,
     author = {Das, Namita and Sahoo, Srinibas},
     title = {Hilbert inequality for vector valued functions},
     journal = {Archivum mathematicum},
     pages = {229--243},
     publisher = {mathdoc},
     volume = {47},
     number = {3},
     year = {2011},
     mrnumber = {2852383},
     zbl = {1249.26033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2011__47_3_a4/}
}
TY  - JOUR
AU  - Das, Namita
AU  - Sahoo, Srinibas
TI  - Hilbert inequality for vector valued functions
JO  - Archivum mathematicum
PY  - 2011
SP  - 229
EP  - 243
VL  - 47
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2011__47_3_a4/
LA  - en
ID  - ARM_2011__47_3_a4
ER  - 
%0 Journal Article
%A Das, Namita
%A Sahoo, Srinibas
%T Hilbert inequality for vector valued functions
%J Archivum mathematicum
%D 2011
%P 229-243
%V 47
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2011__47_3_a4/
%G en
%F ARM_2011__47_3_a4
Das, Namita; Sahoo, Srinibas. Hilbert inequality for vector valued functions. Archivum mathematicum, Tome 47 (2011) no. 3, pp. 229-243. http://geodesic.mathdoc.fr/item/ARM_2011__47_3_a4/