Induced differential forms on manifolds of functions
Archivum mathematicum, Tome 47 (2011) no. 3, pp. 201-215.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Differential forms on the Fréchet manifold $\mathcal{F}(S,M)$ of smooth functions on a compact $k$-dimensional manifold $S$ can be obtained in a natural way from pairs of differential forms on $M$ and $S$ by the hat pairing. Special cases are the transgression map $\Omega ^p(M)\rightarrow \Omega ^{p-k}(\mathcal{F}(S,M))$ (hat pairing with a constant function) and the bar map $\Omega ^p(M)\rightarrow \Omega ^p(\mathcal{F}(S,M))$ (hat pairing with a volume form). We develop a hat calculus similar to the tilda calculus for non-linear Grassmannians [6].
Classification : 11K11, 22C22
Keywords: manifold of functions; fiber integral; diffeomorphism group
@article{ARM_2011__47_3_a2,
     author = {Vizman, Cornelia},
     title = {Induced differential forms on manifolds of functions},
     journal = {Archivum mathematicum},
     pages = {201--215},
     publisher = {mathdoc},
     volume = {47},
     number = {3},
     year = {2011},
     mrnumber = {2852381},
     zbl = {1249.58005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2011__47_3_a2/}
}
TY  - JOUR
AU  - Vizman, Cornelia
TI  - Induced differential forms on manifolds of functions
JO  - Archivum mathematicum
PY  - 2011
SP  - 201
EP  - 215
VL  - 47
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2011__47_3_a2/
LA  - en
ID  - ARM_2011__47_3_a2
ER  - 
%0 Journal Article
%A Vizman, Cornelia
%T Induced differential forms on manifolds of functions
%J Archivum mathematicum
%D 2011
%P 201-215
%V 47
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2011__47_3_a2/
%G en
%F ARM_2011__47_3_a2
Vizman, Cornelia. Induced differential forms on manifolds of functions. Archivum mathematicum, Tome 47 (2011) no. 3, pp. 201-215. http://geodesic.mathdoc.fr/item/ARM_2011__47_3_a2/